Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Exploiting the defensive sugars of HIV 1 for drug and vaccine design

Scanlan CN, Offer J, Zitzmann N, Dwek RA

Exploiting the defensive sugars of HIV-1 for drug and vaccine design. Nature 2007;446(7139):1038-45

Abstract

The sustained effort towards developing an antibody vaccine against HIV/AIDS has provided much of our understanding of viral immunology. It is generally accepted that one of the main barriers to antibody neutralization of HIV is the array of protective structural carbohydrates that covers the antigens on the virus's surface. Intriguingly, however, recent findings suggest that these carbohydrates, which have evolved to protect HIV and promote its transmission, are also attractive therapeutic targets.

Scientific Publications

A comparative immunogenicity study in rabbits of disulfide stabilized proteolytically cleaved soluble trimeric human immunodeficiency virus type 1 gp140 trimeric cleavage defective gp140 and monomeric gp120

Beddows S, Franti M, Dey AK, Kirschner M, Iyer SP, Fisch DC, Ketas T, Yuste E, Desrosiers RC, Klasse PJ, Maddon PJ, Olson WC, Moore JP

A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120. Virology 2007;360(2):329-40

Abstract

The human immunodeficiency virus type 1 (HIV-1) surface envelope glycoprotein (Env) complex, a homotrimer containing gp120 surface glycoprotein and gp41 transmembrane glycoprotein subunits, mediates the binding and fusion of the virus with susceptible target cells. The Env complex is the target for neutralizing antibodies (NAbs) and is the basis for vaccines intended to induce NAbs. Early generation vaccines based on monomeric gp120 subunits did not confer protection from infection; one alternative approach is therefore to make and evaluate soluble forms of the trimeric Env complex. We have directly compared the immunogenicity in rabbits of two forms of soluble trimeric Env and monomeric gp120 based on the sequence of HIV-1(JR-FL). Both protein-only and DNA-prime, protein-boost immunization formats were evaluated, DNA-priming having little or no influence on the outcome. One form of trimeric Env was made by disrupting the gp120-gp41 cleavage site by mutagenesis (gp140(UNC)), the other contains an intramolecular disulfide bond to stabilize the cleaved gp120 and gp41 moieties (SOSIP.R6 gp140). Among the three immunogens, SOSIP.R6 gp140 most frequently elicited neutralizing antibodies against the homologous, neutralization-resistant strain, HIV-1(JR-FL). All three proteins induced NAbs against more sensitive strains, but the breadth of activity against heterologous primary isolates was limited. When antibodies able to neutralize HIV-1(JR-FL) were detected, antigen depletion studies showed they were not directed at the V3 region but were targeted at other, undefined gp120 and also non-gp120 epitopes.

Scientific Publications

An affinity enhanced neutralizing antibody against the membrane proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10

Nelson JD, Brunel FM, Jensen R, Crooks ET, Cardoso RM, Wang M, Hessell A, Wilson IA, Binley JM, Dawson PE, Burton DR, Zwick MB

An affinity-enhanced neutralizing antibody against the membrane-proximal external region of human immunodeficiency virus type 1 gp41 recognizes an epitope between those of 2F5 and 4E10. J. Virol. 2007;81(8):4033-43

Abstract

The membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 bears the epitopes of two broadly neutralizing antibodies (Abs), 2F5 and 4E10, making it a target for vaccine design. A third Ab, Fab Z13, had previously been mapped to an epitope that overlaps those of 2F5 and 4E10 but only weakly neutralizes a limited set of primary isolates. Here, libraries of Fab Z13 variants displayed on phage were engineered and affinity selected against an MPER peptide and recombinant gp41. A high-affinity variant, designated Z13e1, was isolated and found to be approximately 100-fold improved over the parental Fab not only in binding affinity for the MPER antigens but also in neutralization potency against sensitive HIV-1. Alanine scanning of MPER residues 664 to 680 revealed that N671 and D674 are crucial for peptide recognition as well as for the neutralization of HIV-1 by Z13e1. Ab competition studies and truncation of MPER peptides indicate that Z13e1 binds with high affinity to an epitope between and overlapping with those of 2F5 and 4E10, with the minimal peptide epitope WASLWNWFDITN. Still, Z13e1 remained about an order of magnitude less potent than 4E10 against several isolates of pseudotyped HIV-1. The sum of our molecular analyses with Z13e1 suggests that the segment on the MPER of gp41 between the 2F5 and 4E10 epitopes is exposed on the functional envelope trimer but that access to the specific Z13e1 epitope within this segment is limited. Thus, the ability of MPER-bearing immunogens to elicit potent HIV-1-neutralizing Abs may depend in part on recapitulating the particular constraints that the functional envelope trimer imposes on the segment of the MPER to which Z13e1 binds.

Scientific Publications

Antigenic and immunogenic study of membrane proximal external region grafted gp120 antigens by a DNA prime protein boost immunization strategy

Law M, Cardoso RM, Wilson IA, Burton DR

Antigenic and immunogenic study of membrane-proximal external region-grafted gp120 antigens by a DNA prime-protein boost immunization strategy. J. Virol. 2007;81(8):4272-85

Abstract

The membrane-proximal external region (MPER) of human immunodeficiency virus type 1 (HIV-1) gp41 is a target of broadly neutralizing monoclonal antibodies (MAbs) 2F5, 4E10, and Z13. Here we engrafted the MPER into the V1/2 region of HIV-1 gp120 to investigate the ability of the engineered antigens to elicit virus-neutralizing antibodies (NAbs). To promote the correct folding and presentation of the helical 4E10 epitope, we flanked the epitope with helical domains and manipulated the helix by sequential deletion of residues preceding the epitope. Binding of the recombinant proteins to MAb 4E10 increased four- to fivefold with the deletion of one or two residues, but it returned to the wild-type level when three residues were deleted, suggesting rotation of the 4E10 epitope along the helix. Immunization of mice and rabbits by electroporation-mediated DNA priming and protein boosting with these constructs elicited high levels of gp120-specific antibodies. A consistent NAb response against the neutralization-resistant, homologous JR-FL virus was detected in rabbits but not in mice. Analysis of the neutralizing activity revealed that the NAbs do not target the MPER or the V1, V2, or V3 region. Through this study, we learned the following. (i) The 4E10 epitope can be manipulated using a 'rotate-the-helix' strategy that alters the helix register. However, presentation of this epitope in the immunogenic V1/2 region did not render it immunogenic in mice or rabbits. (ii) DNA vaccination with monomeric gp120-based antigens can elicit a consistent NAb response against the homologous neutralization-resistant virus by targeting epitopes outside the V1, V2, and V3 regions.

Scientific Publications

Specific amino acids in the N terminus of the gp41 ectodomain contribute to the stabilization of a soluble cleaved gp140 envelope glycoprotein from human immunodeficiency virus type 1

Dey AK, David KB, Klasse PJ, Moore JP

Specific amino acids in the N-terminus of the gp41 ectodomain contribute to the stabilization of a soluble, cleaved gp140 envelope glycoprotein from human immunodeficiency virus type 1. Virology 2007;360(1):199-208

Abstract

The HIV-1 envelope glycoprotein is expressed on the viral membrane as a trimeric complex, formed by three gp120 surface glycoproteins non-covalently associated with three membrane-anchored gp41 subunits. The labile nature of the association between gp120 and gp41 hinders the expression of soluble, fully cleaved, trimeric gp140 proteins for structural and immunization studies. Disruption of the primary cleavage site within gp160 allows the production of stable gp140 trimers, but cleavage-defective trimers are antigenically dissimilar from their cleaved counterparts. Soluble, stabilized, proteolytically cleaved, trimeric gp140 proteins can be generated by engineering an intermolecular disulfide bond between gp120 and gp41 (SOS), combined with a single residue change, I559P, within gp41 (SOSIP). We have found that SOSIP gp140 proteins based on the subtype A HIV-1 strain KNH1144 form particularly homogenous trimers compared to a prototypic strain (JR-FL, subtype B). We now show that the determinants of this enhanced stability are located in the N-terminal region of KNH11144 gp41 and that, when substituted into heterologous Env sequences (e.g., JR-FL and Ba-L) they have a similarly beneficial effect on trimer stability. The stabilized trimers retain the epitopes for several neutralizing antibodies (b12, 2G12, 2F5 and 4E10) and the CD4-IgG2 molecule, suggesting that the overall antigenic structure of the gp140 protein has not been adversely impaired by the trimer-stabilizing substitutions. The ability to increase the stability of gp140 trimers might be useful for neutralizing antibody-based vaccine strategies based on the use of this type of immunogen.

Scientific Publications

Studies of a prophylactic HIV 1 vaccine candidate based on modified vaccinia virus Ankara MVA with and without DNA priming effects of dosage and route on safety and immunogenicity

Peters BS, Jaoko W, Vardas E, Panayotakopoulos G, Fast P, Schmidt C, Gilmour J, Bogoshi M, Omosa-Manyonyi G, Dally L, Klavinskis L, Farah B, Tarragona T, Bart PA, Robinson A, Pieterse C, Stevens W, Thomas R, Barin B, McMichael AJ, McIntyre JA, Pantaleo G, Hanke T, Bwayo J

Studies of a prophylactic HIV-1 vaccine candidate based on modified vaccinia virus Ankara (MVA) with and without DNA priming: effects of dosage and route on safety and immunogenicity. Vaccine 2007;25(11):2120-7

Abstract

Two parallel studies evaluated safety and immunogenicity of a prophylactic HIV-1 vaccine in 192 HIV-seronegative, low-risk volunteers. Modified vaccinia virus Ankara (MVA) and plasmid DNA (pTHr) expressed HIV-1 clade A gag p24 and p17 fused to a string of 25 overlapping CD8+ T cell epitopes (HIVA).

Scientific Publications

Male circumcision for HIV prevention in men in Rakai Uganda a randomised trial

Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F, Kiwanuka N, Moulton LH, Chaudhary MA, Chen MZ, Sewankambo NK, Wabwire-Mangen F, Bacon MC, Williams CF, Opendi P, Reynolds SJ, Laeyendecker O, Quinn TC, Wawer MJ

Male circumcision for HIV prevention in men in Rakai, Uganda: a randomised trial. Lancet 2007;369(9562):657-66

Abstract

Ecological and observational studies suggest that male circumcision reduces the risk of HIV acquisition in men. Our aim was to investigate the effect of male circumcision on HIV incidence in men.

Scientific Publications

Investigating the utility of the HIV 1 BED capture enzyme immunoassay using cross sectional and longitudinal seroconverter specimens from Africa

Karita E, Price M, Hunter E, Chomba E, Allen S, Fei L, Kamali A, Sanders EJ, Anzala O, Katende M, Ketter N

Investigating the utility of the HIV-1 BED capture enzyme immunoassay using cross-sectional and longitudinal seroconverter specimens from Africa. AIDS 2007;21(4):403-8

Abstract

The identification of populations at risk of HIV infection is a priority for trials of preventive technologies, including HIV vaccines. To quantify incidence traditionally requires laborious and expensive prospective studies.

Scientific Publications

Executive summary and recommendations from the WHO UNAIDS IAVI expert group consultation on Phase IIB TOC trials as a novel strategy for evaluation of preventive HIV vaccines 31 January 2 February 2006 IAVI New York USA

WHO/UNAIDS/IAVI International Expert Group

Executive summary and recommendations from the WHO/UNAIDS/IAVI expert group consultation on ‘Phase IIB-TOC trials as a novel strategy for evaluation of preventive HIV vaccines’, 31 January-2 February 2006, IAVI, New York, USA. AIDS 2007;21(4):539-46

Abstract

This report summarizes the discussions and recommendations from a consultation held in New York City, USA (31 January-2 February 2006) organized by the joint World Health Organization-United Nations Programme on HIV/AIDS HIV Vaccine Initiative and the International AIDS Vaccine Initiative. The consultation discussed issues related to the design and implementation of phase IIB 'test of concept' trials (phase IIB-TOC), also referred to as 'proof of concept' trials, in evaluating candidate HIV vaccines and their implications for future approval and licensure. The results of a single phase IIB-TOC trial would not be expected to provide sufficient evidence of safety or efficacy required for licensure. In many instances, phase IIB-TOC trials may be undertaken relatively early in development, before manufacturing processes and capacity are developed sufficiently to distribute the vaccine on a large scale. However, experts at this meeting considered the pressure that could arise, particularly in regions hardest hit by AIDS, if a phase IIB-TOC trial showed high levels of efficacy. The group largely agreed that full-scale phase III trials would still be necessary to demonstrate that the vaccine candidate was safe and effective, but emphasized that governments and organizations conducting trials should consider these issues in advance. The recommendations from this meeting should be helpful for all organizations involved in HIV vaccine trials, in particular for the national regulatory authorities in assessing the utility of phase IIB-TOC trials in the overall HIV vaccine research and development process.

Scientific Publications

Structural definition of a conserved neutralization epitope on HIV 1 gp120

Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD

Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 2007;445(7129):732-7

Abstract

The remarkable diversity, glycosylation and conformational flexibility of the human immunodeficiency virus type 1 (HIV-1) envelope (Env), including substantial rearrangement of the gp120 glycoprotein upon binding the CD4 receptor, allow it to evade antibody-mediated neutralization. Despite this complexity, the HIV-1 Env must retain conserved determinants that mediate CD4 binding. To evaluate how these determinants might provide opportunities for antibody recognition, we created variants of gp120 stabilized in the CD4-bound state, assessed binding of CD4 and of receptor-binding-site antibodies, and determined the structure at 2.3 A resolution of the broadly neutralizing antibody b12 in complex with gp120. b12 binds to a conformationally invariant surface that overlaps a distinct subset of the CD4-binding site. This surface is involved in the metastable attachment of CD4, before the gp120 rearrangement required for stable engagement. A site of vulnerability, related to a functional requirement for efficient association with CD4, can therefore be targeted by antibody to neutralize HIV-1.

Scientific Publications

Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV 1 antibody 4E10

Cardoso RM, Brunel FM, Ferguson S, Zwick M, Burton DR, Dawson PE, Wilson IA

Structural basis of enhanced binding of extended and helically constrained peptide epitopes of the broadly neutralizing HIV-1 antibody 4E10. J. Mol. Biol. 2007;365(5):1533-44

Abstract

Potent, broadly HIV-1 neutralizing antibodies (nAbs) may be invaluable for the design of an AIDS vaccine. 4E10 is the broadest HIV-1 nAb known to date and recognizes a contiguous and highly conserved helical epitope in the membrane-proximal region of gp41. The 4E10 epitope is thus an excellent target for vaccine design as it is also highly amenable to peptide engineering to enhance its helical character. To investigate the structural effect of both increasing the peptide length and of introducing helix-promoting constraints in the 4E10 epitope, we have determined crystal structures of Fab 4E10 bound to an optimized peptide epitope (NWFDITNWLWYIKKKK-NH(2)), an Aib-constrained peptide epitope (NWFDITNAibLWRR-NH(2)), and a thioether-linked peptide (NWFCITOWLWKKKK-NH(2)) to resolutions of 1.7 A, 2.1 A, and 2.2 A, respectively. The thioether-linked peptide is the first reported structure of a cyclic tethered helical peptide bound to an antibody. The introduced helix constraints limit the conformational flexibility of the peptides without affecting interactions with 4E10. The substantial increase in affinity (10 nM versus 10(4) nM of the IC(50) of the original KGND peptide template) is largely realized by 4E10 interaction with an additional helical turn at the peptide C terminus that includes Leu679 and Trp680. Thus, the core 4E10 epitope was extended and modified to a WFX(I/L)(T/S)XX(L/I)W motif, where X does not play a major role in 4E10 binding and can be used to introduce helical-promoting constraints in the peptide epitope.

Scientific Publications

Rapid real time detection of acute HIV infection in patients in Africa

Fiscus SA, Pilcher CD, Miller WC, Powers KA, Hoffman IF, Price M, Chilongozi DA, Mapanje C, Krysiak R, Gama S, Martinson FE, Cohen MS

Rapid, real-time detection of acute HIV infection in patients in Africa. J. Infect. Dis. 2007;195(3):416-24

Abstract

We conducted a prospective study to evaluate methods of detecting clients with sexually transmitted diseases (STDs) who were acutely coinfected with human immunodeficiency virus (HIV) in Lilongwe, Malawi.

Scientific Publications

Clinical experience with plasmid DNA and modified vaccinia virus Ankara vectored human immunodeficiency virus type 1 clade A vaccine focusing on T cell induction

Hanke T, Goonetilleke N, McMichael AJ, Dorrell L

Clinical experience with plasmid DNA- and modified vaccinia virus Ankara-vectored human immunodeficiency virus type 1 clade A vaccine focusing on T-cell induction. J. Gen. Virol. 2007;88(Pt 1):1-12

Abstract

Candidate human immunodeficiency virus type 1 (HIV-1) vaccines focusing on T-cell induction, constructed as pTHr.HIVA DNA and modified vaccinia virus Ankara (MVA).HIVA, were delivered in a heterologous prime-boost regimen. The vaccines were tested in several hundred healthy or HIV-1-infected volunteers in Europe and Africa. Whilst larger trials of hundreds of volunteers suggested induction of HIV-1-specific T-cell responses in <15 % of healthy vaccinees, a series of small, rapid trials in 12-24 volunteers at a time with a more in-depth analysis of vaccine-elicited T-cell responses proved to be highly informative and provided more encouraging results. These trials demonstrated that the pTHr.HIVA vaccine alone primed consistently weak and mainly CD4(+), but also CD8(+) T-cell responses, and the MVA.HIVA vaccine delivered a consistent boost to both CD4(+) and CD8(+) T cells, which was particularly strong in HIV-1-infected patients. Thus, whilst the search is on for ways to enhance T-cell priming, MVA is a useful boosting vector for human subunit genetic vaccines.