Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

A Phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C modified vaccinia Ankara virus vaccine candidate in Indian volunteers

Ramanathan VD, Kumar M, Mahalingam J, Sathyamoorthy P, Narayanan PR, Solomon S, Panicali D, Chakrabarty S, Cox J, Sayeed E, Ackland J, Verlinde C, Vooijs D, Loughran K, Barin B, Lombardo A, Gilmour J, Stevens G, Smith MS, Tarragona-Fiol T, Hayes P, Kochhar S, Excler JL, Fast P

A Phase 1 study to evaluate the safety and immunogenicity of a recombinant HIV type 1 subtype C-modified vaccinia Ankara virus vaccine candidate in Indian volunteers. AIDS Res. Hum. Retroviruses 2009;25(11):1107-16 doi: 10.1089/aid.2009.0096

Abstract

A recombinant modified vaccinia Ankara virus vaccine candidate (TBC-M4) expressing HIV-1 subtype C env, gag, tat-rev, and nef-RT genes was tested in a randomized, double-blind, dose escalation Phase I trial in 32 HIV-uninfected healthy volunteers who received three intramuscular injections of TBC-M4 at 0, 1, and 6 months of 5 x 10(7) plaque-forming units (pfu) (low dosage, LD) (n = 12) or 2.5 x 10(8) pfu (high dosage, HD) (n = 12) or placebo (n = 8). Local and systemic reactogenicity was experienced by approximately 67% and 83% of vaccine recipients, respectively. The reactogenicity events were mostly mild in severity. Severe but transient systemic reactogenicity was seen in one volunteer of the HD group. No vaccine-related serious adverse events or events suggesting perimyocarditis were seen. A higher frequency of local reactogenicity events was observed in the HD group. Cumulative HIV-specific IFN-gamma ELISPOT responses were detected in frozen PBMCs from 9/11 (82%), 12/12 (100%), and 1/8 (13%) volunteers after the third injection of the LD, HD, and placebo groups, respectively. Most of the responses were to gag and env proteins (maximum of 430 SFU/10(6) PBMCs) persisting across multiple time points. HIV-specific ELISA antibody responses were detected in 10/11, 12/12, and 0/8 volunteers post-third vaccination, in the LD, HD, and placebo groups, respectively. No neutralizing activity against HIV-1 subtype C isolates was detected. TBC-M4 appears to be generally safe and well-tolerated. The immune response detected was dose dependent, modest in magnitude, and directed mostly to env and gag proteins, suggesting further evaluation of this vaccine in a prime-boost regimen.

Scientific Publications

Adaptive mutations in a human immunodeficiency virus type 1 envelope protein with a truncated V3 loop restore function by improving interactions with CD4

Agrawal-Gamse C, Lee FH, Haggarty B, Jordan AP, Yi Y, Lee B, Collman RG, Hoxie JA, Doms RW, Laakso MM

Adaptive mutations in a human immunodeficiency virus type 1 envelope protein with a truncated V3 loop restore function by improving interactions with CD4. J. Virol. 2009;83(21):11005-15 doi: 10.1128/JVI.01238-09

Abstract

We previously reported that a human immunodeficiency virus type 1 (HIV-1) clade B envelope protein with a severely truncated V3 loop regained function after passage in tissue culture. The adapted virus, termed TA1, retained the V3 truncation, was exquisitely sensitive to neutralization by the CD4 binding site monoclonal antibody b12 and by HIV-positive human sera, used CCR5 to enter cells, and was completely resistant to small molecule CCR5 antagonists. To examine the mechanistic basis for these properties, we singly and in combination introduced each of the 5 mutations from the adapted clone TA1 into the unadapted envelope. We found that single amino acid changes in the C3 region, the V3 loop, and in the fusion peptide were responsible for imparting near-normal levels of envelope function to TA1. T342A, which resulted in the loss of a highly conserved glycosylation site in C3, played the primary role. The adaptive amino acid changes had no impact on CCR5 antagonist resistance but made virus more sensitive to neutralization by antibodies to the CD4 binding site, modestly enhanced affinity for CD4, and made TA1 more responsive to CD4 binding. Specifically, TA1 was triggered by soluble CD4 more readily than the parental Env and, unlike the parental Env, could mediate entry on cells that express low levels of CD4. In contrast, TA1 interacted with CCR5 less efficiently and was highly sensitive to antibodies that bind to the CCR5 N terminus and ECL2. Therefore, enhanced utilization of CD4 is one mechanism by which HIV-1 can overcome mutations in the V3 region that negatively affect CCR5 interactions.

Scientific Publications

HIV inactivation by cross linking of photo labeled anti retroviral compounds with HIV reverse transcriptase

Colby-Germinario S, Rios A, Quesada J, Anderson D, Goldstein AL, Fossum T, Wainberg MA

HIV inactivation by cross-linking of photo-labeled anti-retroviral compounds with HIV reverse transcriptase. Vaccine 2009;27(44):6137-42 doi: 10.1016/j.vaccine.2009.08.028

Abstract

We describe a new method for the development of a preventive inactivated-HIV vaccine, based on photo-inactivation of HIV reverse transcriptase (RT), which preserves both the conformational and functional integrity of viral surface proteins. The RT of HIV-1 was selectively targeted for inactivation using a photo-labeled compound with specific affinity for HIV-1 RT. The photo-labeled virions were then exposed to UV light causing the photo-labeled compound to form a covalent bond cross-linking the photo-active compound to RT. Replication capacity of the treated virions was significantly reduced when compared to controls suggesting that exposure of treated virions to UV light had caused a stable interaction of RT and the photo-labeling compound.

Scientific Publications

Vaccination with SIVmac239Deltanef activates CD4 T cells in the absence of CD4 T cell loss

Reeves RK, Gillis J, Wong FE, Johnson RP

Vaccination with SIVmac239Deltanef activates CD4+ T cells in the absence of CD4 T-cell loss. J. Med. Primatol. 2009;38 Suppl 1:8-16 doi: 10.1111/j.1600-0684.2009.00370.x

Abstract

Pathogenic HIV and SIV infections characteristically deplete central memory CD4(+) T cells and induce chronic immune activation, but it is controversial whether this also occurs after vaccination with attenuated SIVs and whether depletion or activation of CD4(+) T-cell play roles in protection against wild-type virus challenge.

Scientific Publications

Broad and potent neutralizing antibodies from an African donor reveal a new HIV 1 vaccine target

Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR

Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009;326(5950):285-9 doi: 10.1126/science.1178746

Abstract

Broadly neutralizing antibodies (bNAbs), which develop over time in some HIV-1-infected individuals, define critical epitopes for HIV vaccine design. Using a systematic approach, we have examined neutralization breadth in the sera of about 1800 HIV-1-infected individuals, primarily infected with non-clade B viruses, and have selected donors for monoclonal antibody (mAb) generation. We then used a high-throughput neutralization screen of antibody-containing culture supernatants from about 30,000 activated memory B cells from a clade A-infected African donor to isolate two potent mAbs that target a broadly neutralizing epitope. This epitope is preferentially expressed on trimeric Envelope protein and spans conserved regions of variable loops of the gp120 subunit. The results provide a framework for the design of new vaccine candidates for the elicitation of bNAb responses.

Scientific Publications

Photoinduced family specific site selective cleavage of TIM barrel proteins

Floyd N, Oldham NJ, Eyles CJ, Taylor S, Filatov DA, Brouard M, Davis BG

Photoinduced, family-specific, site-selective cleavage of TIM-barrel proteins. J. Am. Chem. Soc. 2009;131(35):12518-9 doi: 10.1021/ja9026105

Abstract

Nonenzymatic, chemical methods for the controlled cleavage of proteins at predictable sites in a site-specific manner are rare and of strong potential utility in clean, post-translational manipulation of protein structure for use in, for example, proteomics, sequencing, and tagged-protein production. Unprecedented photochemical, site-selective cleavage of a His-Trp (HW) motif in the GH1 family TIM-barrel proteins is observed upon exposure to 240-308 nm light to cleanly release N-terminal primary amide and C-terminal indolylenamide fragments. We also show that this photocleaveable motif can be transferred to fusion proteins for use in photoresponsive affinty purification. The presence of this motif in proteins found only in organisms that are not typically exposed to light raises the possibility of direct biological relevance for this new type of protein reaction.

Scientific Publications

Escape from autologous neutralizing antibodies in acute early subtype C HIV 1 infection requires multiple pathways

Rong R, Li B, Lynch RM, Haaland RE, Murphy MK, Mulenga J, Allen SA, Pinter A, Shaw GM, Hunter E, Robinson JE, Gnanakaran S, Derdeyn CA

Escape from autologous neutralizing antibodies in acute/early subtype C HIV-1 infection requires multiple pathways. PLoS Pathog. 2009;5(9):e1000594 doi: 10.1371/journal.ppat.1000594

Abstract

One aim for an HIV vaccine is to elicit neutralizing antibodies (Nab) that can limit replication of genetically diverse viruses and prevent establishment of a new infection. Thus, identifying the strengths and weaknesses of Nab during the early stages of natural infection could prove useful in achieving this goal. Here we demonstrate that viral escape readily occurred despite the development of high titer autologous Nab in two subjects with acute/early subtype C infection. To provide a detailed portrayal of the escape pathways, Nab resistant variants identified at multiple time points were used to create a series of envelope (Env) glycoprotein chimeras and mutants within the background of a corresponding newly transmitted Env. In one subject, Nab escape was driven predominantly by changes in the region of gp120 that extends from the beginning of the V3 domain to the end of the V5 domain (V3V5). However, Nab escape pathways in this subject oscillated and at times required cooperation between V1V2 and the gp41 ectodomain. In the second subject, escape was driven by changes in V1V2. This V1V2-dependent escape pathway was retained over time, and its utility was reflected in the virus's ability to escape from two distinct monoclonal antibodies (Mabs) derived from this same patient via introduction of a single potential N-linked glycosylation site in V2. Spatial representation of the sequence changes in gp120 suggested that selective pressure acted upon the same regions of Env in these two subjects, even though the Env domains that drove escape were different. Together the findings argue that a single mutational pathway is not sufficient to confer escape in early subtype C HIV-1 infection, and support a model in which multiple strategies, including potential glycan shifts, direct alteration of an epitope sequence, and cooperative Env domain conformational masking, are used to evade neutralization.

Scientific Publications

A conformational switch in human immunodeficiency virus gp41 revealed by the structures of overlapping epitopes recognized by neutralizing antibodies

Pejchal R, Gach JS, Brunel FM, Cardoso RM, Stanfield RL, Dawson PE, Burton DR, Zwick MB, Wilson IA

A conformational switch in human immunodeficiency virus gp41 revealed by the structures of overlapping epitopes recognized by neutralizing antibodies. J. Virol. 2009;83(17):8451-62 doi: 10.1128/JVI.00685-09

Abstract

The membrane-proximal external region (MPER) of the human immunodeficiency virus (HIV) envelope glycoprotein (gp41) is critical for viral fusion and infectivity and is the target of three of the five known broadly neutralizing HIV type 1 (HIV-1) antibodies, 2F5, Z13, and 4E10. Here, we report the crystal structure of the Fab fragment of Z13e1, an affinity-enhanced variant of monoclonal antibody Z13, in complex with a 12-residue peptide corresponding to the core epitope (W(670)NWFDITN(677)) at 1.8-A resolution. The bound peptide adopts an S-shaped conformation composed of two tandem, perpendicular helical turns. This conformation differs strikingly from the alpha-helical structure adopted by an overlapping MPER peptide bound to 4E10. Z13e1 binds to an elbow in the MPER at the membrane interface, making relatively few interactions with conserved aromatics (Trp672 and Phe673) that are critical for 4E10 recognition. The comparison of the Z13e1 and 4E10 epitope structures reveals a conformational switch such that neutralization can occur by the recognition of the different conformations and faces of the largely amphipathic MPER. The Z13e1 structure provides significant new insights into the dynamic nature of the MPER, which likely is critical for membrane fusion, and it has significant implications for mechanisms of HIV-1 neutralization by MPER antibodies and for the design of HIV-1 immunogens.

Scientific Publications

Transitions to and from the CD4 bound conformation are modulated by a single residue change in the human immunodeficiency virus type 1 gp120 inner domain

Kassa A, Madani N, Schön A, Haim H, Finzi A, Xiang SH, Wang L, Princiotto A, Pancera M, Courter J, Smith AB, Freire E, Kwong PD, Sodroski J

Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain. J. Virol. 2009;83(17):8364-78 doi: 10.1128/JVI.00594-09

Abstract

Binding to the primary receptor CD4 induces conformational changes in the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein that allow binding to the coreceptor (CCR5 or CXCR4) and ultimately trigger viral membrane-cell membrane fusion mediated by the gp41 transmembrane envelope glycoprotein. Here we report the derivation of an HIV-1 gp120 variant, H66N, that confers envelope glycoprotein resistance to temperature extremes. The H66N change decreases the spontaneous sampling of the CD4-bound conformation by the HIV-1 envelope glycoproteins, thus diminishing CD4-independent infection. The H66N change also stabilizes the HIV-1 envelope glycoprotein complex once the CD4-bound state is achieved, decreasing the probability of CD4-induced inactivation and revealing the enhancing effects of soluble CD4 binding on HIV-1 infection. In the CD4-bound conformation, the highly conserved histidine 66 is located between the receptor-binding and gp41-interactive surfaces of gp120. Thus, a single amino acid change in this strategically positioned gp120 inner domain residue influences the propensity of the HIV-1 envelope glycoproteins to negotiate conformational transitions to and from the CD4-bound state.

Scientific Publications

Selective expansion of HIV 1 envelope glycoprotein specific B cell subsets recognizing distinct structural elements following immunization

Dosenovic P, Chakrabarti B, Soldemo M, Douagi I, Forsell MN, Li Y, Phogat A, Paulie S, Hoxie J, Wyatt RT, Karlsson Hedestam GB

Selective expansion of HIV-1 envelope glycoprotein-specific B cell subsets recognizing distinct structural elements following immunization. J. Immunol. 2009;183(5):3373-82 doi: 10.4049/jimmunol.0900407

Abstract

The HIV-1 envelope glycoprotein (Env) functional spike has evolved multiple immune evasion strategies, and only a few broadly neutralizing determinants on the assembled spike are accessible to Abs. Serological studies, based upon Ab binding and neutralization activity in vitro, suggest that vaccination with current Env-based immunogens predominantly elicits Abs that bind nonneutralizing or strain-restricted neutralizing epitopes. However, the fractional specificities of the polyclonal mixture of Abs present in serum, especially those directed to conformational Env epitopes, are often difficult to determine. Furthermore, serological analyses do not provide information regarding how repeated Ag inoculation impacts the expansion and maintenance of Env-specific B cell subpopulations. Therefore, we developed a highly sensitive Env-specific B cell ELISPOT system, which allows the enumeration of Ab-secreting cells (ASC) from diverse anatomical compartments directed against different structural determinants of Env. In this study, we use this system to examine the evolution of B cell responses in mice immunized with engineered Env trimers in adjuvant. We demonstrate that the relative proportion of ASC specific for defined structural elements of Env is altered significantly by homologous booster immunizations. This results in the selective expansion of ASC directed against the variable regions of Env. We suggest that the B cell specificity and compartment analysis described in this study are important complements to serological mapping studies for the examination of B cell responses against subspecificities of a variety of immunogens.

Scientific Publications

Pregnancy rates among female participants in phase I and phase IIA AIDS vaccine clinical trials in Kenya

Jaoko WG, Ogutu H, Wakasiaka S, Malogo R, Ndambuki R, Nyange J, Omosa-Manyonyi G, Fast P, Schmidt C, Verlinde C, Smith C, Bhatt KM, Ndinya-Achola J, Anzala O

Pregnancy rates among female participants in phase I and phase IIA AIDS vaccine clinical trials in Kenya. East Afr Med J 2009;86(9):430-4

Abstract

Female participants in AIDS candidate vaccine clinical trials must agree to use effective contraception to be enrolled into the studies, and for a specified period after vaccination, since the candidate vaccines' effects on the embryo or foetus are unknown.

Scientific Publications

Heterosexual transmission of human immunodeficiency virus type 1 subtype C Macrophage tropism alternative coreceptor use and the molecular anatomy of CCR5 utilization

Isaacman-Beck J, Hermann EA, Yi Y, Ratcliffe SJ, Mulenga J, Allen S, Hunter E, Derdeyn CA, Collman RG

Heterosexual transmission of human immunodeficiency virus type 1 subtype C: Macrophage tropism, alternative coreceptor use, and the molecular anatomy of CCR5 utilization. J. Virol. 2009;83(16):8208-20 doi: 10.1128/JVI.00296-09

Abstract

Human immunodeficiency virus type 1 transmission selects for virus variants with genetic characteristics distinct from those of donor quasispecies, but the biological factors favoring their transmission or establishment in new hosts are poorly understood. We compared primary target cell tropisms and entry coreceptor utilizations of donor and recipient subtype C Envs obtained near the time of acute infection from Zambian heterosexual transmission pairs. Both donor and recipient Envs demonstrated only modest macrophage tropism, and there was no overall difference between groups in macrophage or CD4 T-cell infection efficiency. Several individual pairs showed donor/recipient differences in primary cell infection, but these were not consistent between pairs. Envs had surprisingly broad uses of GPR15, CXCR6, and APJ, but little or no use of CCR2b, CCR3, CCR8, GPR1, and CXCR4. Donors overall used GPR15 better than did recipients. However, while several individual pairs showed donor/recipient differences for GPR15 and/or other coreceptors, the direction of the differences was inconsistent, and several pairs had unique alternative coreceptor patterns that were conserved across the transmission barrier. CCR5/CCR2b chimeras revealed that recipients as a group were more sensitive than were donors to replacement of the CCR5 extracellular loops with corresponding regions of CCR2b, but significant differences in this direction were not consistent within pairs. These data show that sexual transmission does not select for enhanced macrophage tropism, nor for preferential use of any alternative coreceptor. Recipient Envs are somewhat more constrained than are donors in flexibility of CCR5 use, but this pattern is not universal for all pairs, indicating that it is not an absolute requirement.

Scientific Publications

Neutralizing antibodies generated during natural HIV 1 infection good news for an HIV 1 vaccine

Stamatatos L, Morris L, Burton DR, Mascola JR

Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat. Med. 2009;15(8):866-70 doi: 10.1038/nm.1949

Abstract

Most existing viral vaccines generate antibodies that either block initial infection or help eradicate the virus before it can cause disease. For HIV-1, obstacles to eliciting protective neutralizing antibodies (NAbs) have often seemed insurmountable. The target of HIV-specific NAbs, the viral envelope glycoprotein (Env), is highly variable in amino acid sequence and glycosylation pattern. Conserved elements of HIV-1 Env seem to be poorly immunogenic, and previous attempts to generate broadly reactive NAbs by vaccination have proven ineffective. However, recent studies show that antibodies in the sera of some HIV-1-infected individuals can neutralize diverse HIV-1 isolates. Detailed analyses of these sera provide new insights into the viral epitopes targeted by broadly reactive NAbs. The findings discussed here suggest that the natural NAb response to HIV-1 can inform future vaccine design. A concerted effort of structure-based vaccine design will help guide the development of improved antibody-based vaccines for HIV-1.