Filter by
-
Type
Scientific Publications
Synthesis and analysis of the membrane proximal external region epitopes of HIV 1
Ingale S, Gach JS, Zwick MB, Dawson PE
Synthesis and analysis of the membrane proximal external region epitopes of HIV-1. J. Pept. Sci. 2010;16(12):716-22 doi: 10.1002/psc.1325
doi: 10.1002/psc.1325
Abstract
The membrane proximal external region (MPER) of gp41 abuts the viral membrane at the base of HIV-1 envelope glycoprotein spikes. The MPER is highly conserved and is rich in Trp and other lipophilic residues. The MPER is also required for the infection of host cells by HIV-1 and is the target of the broadly neutralizing antibodies, 4E10, 2F5, and Z13e1. These neutralizing antibodies are valuable tools for understanding relevant conformations of the MPER and for studying HIV-1 neutralization, but multiple approaches used to elicit MPER binding antibodies with similar neutralization properties have failed. Here we report our efforts to mimic the MPER using linear as well as constrained peptides. Unnatural amino acids were also introduced into the core epitope of 4E10 to probe requirements of antibody binding. Peptide analogs with C-terminal Api or Aib residues designed to be helical transmembrane (TM) domain surrogates exhibit enhanced binding to the 4E10 and Z13e1 antibodies. However, we find that placement of constrained amino acids at nonbinding sites within the core epitope significantly reduce binding. These results are relevant to an understanding of native MPER structure on HIV-1, and form a basis for a chemical synthesis approach to mimic MPER stricture and to construct an MPER-based vaccine.
Scientific Publications
Beyond detuning 10 years of progress and new challenges in the development and application of assays for HIV incidence estimation
Busch MP, Pilcher CD, Mastro TD, Kaldor J, Vercauteren G, Rodriguez W, Rousseau C, Rehle TM, Welte A, Averill MD, Garcia Calleja JM
Beyond detuning: 10 years of progress and new challenges in the development and application of assays for HIV incidence estimation. AIDS 2010;24(18):2763-71 doi: 10.1097/QAD.0b013e32833f1142
Scientific Publications
High prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae infections among HIV 1 negative men who have sex with men in coastal Kenya
Sanders EJ, Thiong'o AN, Okuku HS, Mwambi J, Priddy F, Shafi J, de Vries H, McClelland RS, Graham SM
High prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae infections among HIV-1 negative men who have sex with men in coastal Kenya. Sex Transm Infect 2010;86(6):440-1 doi: 10.1136/sti.2010.043224
Abstract
To assess the burden of Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) in high-risk HIV-1 negative men who have sex with men (MSM) in Africa.
Scientific Publications
Vaccination with a modified vaccinia virus Ankara MVA vectored HIV 1 immunogen induces modest vector specific T cell responses in human subjects
Howles S, Guimarães-Walker A, Yang H, Hancock G, di Gleria K, Tarragona-Fiol T, Hayes P, Gilmour J, Bridgeman A, Hanke T, McMichael A, Dorrell L
Vaccination with a modified vaccinia virus Ankara (MVA)-vectored HIV-1 immunogen induces modest vector-specific T cell responses in human subjects. Vaccine 2010;28(45):7306-12 doi: 10.1016/j.vaccine.2010.08.077
Abstract
We investigated whether vaccination of healthy HIV-seronegative and HIV-1-seropositive antiretroviral therapy-treated subjects with recombinant modified vaccinia virus Ankara expressing an HIV-1 immunogen (MVA.HIVA) induced MVA-specific T cell responses. Using IFN-γ Elispot assays, we observed new or increased responses to MVA virus in 52% of HIV-seronegative subjects and 93% HIV-1 seropositive subjects; MVA-specific T cell frequencies were generally low and correlated poorly with T cell responses to the HIV-1 immunogen. In two vaccinees, responses were mapped to CD8+ T cell epitopes present in replication-competent vaccinia virus. These data support further evaluation of MVA as a viral vector for HIV-1 immunogens.
Scientific Publications
Elicitation of structure specific antibodies by epitope scaffolds
Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, Kwong PD
Elicitation of structure-specific antibodies by epitope scaffolds. Proc. Natl. Acad. Sci. U.S.A. 2010;107(42):17880-7 doi: 10.1073/pnas.1004728107
Abstract
Elicitation of antibodies against targets that are immunorecessive, cryptic, or transient in their native context has been a challenge for vaccine design. Here we demonstrate the elicitation of structure-specific antibodies against the HIV-1 gp41 epitope of the broadly neutralizing antibody 2F5. This conformationally flexible region of gp41 assumes mostly helical conformations but adopts a kinked, extended structure when bound by antibody 2F5. Computational techniques were employed to transplant the 2F5 epitope into select acceptor scaffolds. The resultant '2F5-epitope scaffolds' possessed nanomolar affinity for antibody 2F5 and a range of epitope flexibilities and antigenic specificities. Crystallographic characterization of the epitope scaffold with highest affinity and antigenic discrimination confirmed good to near perfect attainment of the target conformation for the gp41 molecular graft in free and 2F5-bound states, respectively. Animals immunized with 2F5-epitope scaffolds showed levels of graft-specific immune responses that correlated with graft flexibility (p < 0.04), while antibody responses against the graft-as dissected residue-by-residue with alanine substitutions-resembled more closely those of 2F5 than sera elicited with flexible or cyclized peptides, a resemblance heightened by heterologous prime-boost. Lastly, crystal structures of a gp41 peptide in complex with monoclonal antibodies elicited by the 2F5-epitope scaffolds revealed that the elicited antibodies induce gp41 to assume its 2F5-recognized shape. Epitope scaffolds thus provide a means to elicit antibodies that recognize a predetermined target shape and sequence, even if that shape is transient in nature, and a means by which to dissect factors influencing such elicitation.
Scientific Publications
Scaffolding to build a rational vaccine design strategy
Burton DR
Scaffolding to build a rational vaccine design strategy. Proc. Natl. Acad. Sci. U.S.A. 2010;107(42):17859-60 doi: 10.1073/pnas.1012923107
Scientific Publications
Expression system dependent modulation of HIV 1 envelope glycoprotein antigenicity and immunogenicity
Kong L, Sheppard NC, Stewart-Jones GB, Robson CL, Chen H, Xu X, Krashias G, Bonomelli C, Scanlan CN, Kwong PD, Jeffs SA, Jones IM, Sattentau QJ
Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J. Mol. Biol. 2010;403(1):131-47 doi: 10.1016/j.jmb.2010.08.033
Abstract
Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.
Scientific Publications
A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity
Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR, Finn MG, Burton DR, Wilson IA, Davis BG
A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc. Natl. Acad. Sci. U.S.A. 2010;107(40):17107-12 doi: 10.1073/pnas.1002717107
Abstract
Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.
Scientific Publications
Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques
Ng CT, Jaworski JP, Jayaraman P, Sutton WF, Delio P, Kuller L, Anderson D, Landucci G, Richardson BA, Burton DR, Forthal DN, Haigwood NL
Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nat. Med. 2010;16(10):1117-9 doi: 10.1038/nm.2233
doi: 10.1038/nm.2233
Abstract
Maternal HIV-1-specific antibodies are efficiently transferred to newborns, but their role in disease control is unknown. We administered neutralizing IgG, including the human neutralizing monoclonal IgG1b12, at levels insufficient to block infection, to six newborn macaques before oral challenge with simian-HIV strain SF162P3 (SHIV(SF162P3)). All of the macaques rapidly developed neutralizing antibodies and had significantly reduced plasma viremia for six months. These studies support the use of neutralizing antibodies in enhancing B cell responses and viral control in perinatal settings.
Scientific Publications
Very few substitutions in a germ line antibody are required to initiate significant domain exchange
Huber M, Le KM, Doores KJ, Fulton Z, Stanfield RL, Wilson IA, Burton DR
Very few substitutions in a germ line antibody are required to initiate significant domain exchange. J. Virol. 2010;84(20):10700-7 doi: 10.1128/JVI.01111-10
doi: 10.1128/jvi.01111-10
Abstract
2G12 is a broadly neutralizing anti-HIV-1 monoclonal human IgG1 antibody reactive with a high-mannose glycan cluster on the surface of glycoprotein gp120. A key feature of this very highly mutated antibody is domain exchange of the heavy-chain variable region (V(H)) with the V(H) of the adjacent Fab of the same immunoglobulin, which assembles a multivalent binding interface composed of two primary binding sites in close proximity. A non-germ line-encoded proline in the elbow between V(H) and C(H)1 and an extensive network of hydrophobic interactions in the V(H)/V(H)' interface have been proposed to be crucial for domain exchange. To investigate the origins of domain exchange, a germ line version of 2G12 that behaves as a conventional antibody was engineered. Substitution of 5 to 7 residues for those of the wild type produced a significant fraction of domain-exchanged molecules, with no evidence of equilibrium between domain-exchanged and conventional forms. Two substitutions not previously implicated, A(H14) and E(H75), are the most crucial for domain exchange, together with I(H19) at the V(H)/V(H)' interface and P(H113) in the elbow region. Structural modeling gave clues as to why these residues are essential for domain exchange. The demonstration that domain exchange can be initiated by a small number of substitutions in a germ line antibody suggests that the evolution of a domain-exchanged antibody response in vivo may be more readily achieved than considered to date.
Scientific Publications
HIV vaccines current status worldwide and in Africa
Fast PE, Kaleebu P
HIV vaccines: current status worldwide and in Africa. AIDS 2010;24 Suppl 4:S50-60 doi: 10.1097/01.aids.0000390707.58512.5e
Abstract
Since HIV-1 was identified, development of a preventive vaccine has been a major goal. Significant progress toward that goal has been made by 2010. In macaques, a vigorous T effector cell response has protected some animals from disease caused by simian immunodeficiency virus (SIV). Broadly, neutralizing human anti-HIV antibodies have been isolated and their structures, and targets are rapidly being elucidated. For the first time an AIDS vaccine has shown modest protective efficacy in a human clinical trial. To reach the final goal, there is a need for a coordinated global effort, including a range of approaches including novel high-throughput screening techniques, X-ray crystallography, and monoclonal antibody isolation, analysis of T cell responses and their impact on disease progression, human epidemiology, as well as targeted studies in nonhuman primates. African research teams as well as cohorts of healthy volunteers and HIV-infected individuals have contributed to HIV vaccine research and development in many important ways. It is essential that this work continue to speed the development and deployment of a vaccine suitable for African populations.
Scientific Publications
Antibody 2G12 recognizes di mannose equivalently in domain and nondomain exchanged forms but only binds the HIV 1 glycan shield if domain exchanged
Doores KJ, Fulton Z, Huber M, Wilson IA, Burton DR
Antibody 2G12 recognizes di-mannose equivalently in domain- and nondomain-exchanged forms but only binds the HIV-1 glycan shield if domain exchanged. J. Virol. 2010;84(20):10690-9 doi: 10.1128/JVI.01110-10
doi: 10.1128/jvi.01110-10
Abstract
The broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibody 2G12 targets the high-mannose cluster on the glycan shield of HIV-1. 2G12 has a unique V(H) domain-exchanged structure, with a multivalent binding surface that includes two primary glycan binding sites. The high-mannose cluster is an attractive target for HIV-1 vaccine design, but so far, no carbohydrate immunogen has elicited 2G12-like antibodies. Important questions remain as to how this domain exchange arose in 2G12 and how this unusual event conferred unexpected reactivity against the glycan shield of HIV-1. In order to address these questions, we generated a nondomain-exchanged variant of 2G12 to produce a conventional Y/T-shaped antibody through a single amino acid substitution (2G12 I19R) and showed that, as for the 2G12 wild type (2G12 WT), this antibody is able to recognize the same Manα1,2Man motif on recombinant gp120, Candida albicans, and synthetic glycoconjugates. However, the nondomain-exchanged variant of 2G12 is unable to bind the cluster of mannose moieties on the surface of HIV-1. Crystallographic analysis of 2G12 I19R in complex with Manα1,2Man revealed an adaptable hinge between V(H) and C(H)1 that enables the V(H) and V(L) domains to assemble in such a way that the configuration of the primary binding site and its interaction with disaccharide are remarkably similar in the nondomain-exchanged and domain-exchanged forms. Together with data that suggest that very few substitutions are required for domain exchange, the results suggest potential mechanisms for the evolution of domain-exchanged antibodies and immunization strategies for eliciting such antibodies.
Scientific Publications
Variable loop glycan dependency of the broad and potent HIV 1 neutralizing antibodies PG9 and PG16
Doores KJ, Burton DR
Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. J. Virol. 2010;84(20):10510-21 doi: 10.1128/JVI.00552-10
doi: 10.1128/jvi.00552-10
Abstract
The HIV-1-specific antibodies PG9 and PG16 show marked cross-isolate neutralization breadth and potency. Antibody neutralization has been shown to be dependent on the presence of N-linked glycosylation at position 160 in gp120. We show here that (i) the loss of several key glycosylation sites in the V1, V2, and V3 loops; (ii) the generation of pseudoviruses in the presence of various glycosidase inhibitors; and (iii) the growth of pseudoviruses in a mutant cell line (GnT1(-/-)) that alters envelope glycosylation patterns all have significant effects on the sensitivity of virus to neutralization by PG9 and PG16. However, the interaction of antibody is not inhibited by sugar monosaccharides corresponding to those found in glycans on the HIV surface. We show that some of the glycosylation effects described are isolate dependent and others are universal and can be used as diagnostic for the presence of PG9 and PG16-like antibodies in the sera of HIV-1-infected patients. The results suggest that PG9 and PG16 recognize a conformational epitope that is dependent on glycosylation at specific variable loop N-linked sites. This information may be valuable for the design of immunogens to elicit PG9 and PG16-like antibodies, as well as constructs for cocrystallization studies.