Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Vaccination with a modified vaccinia virus Ankara MVA vectored HIV 1 immunogen induces modest vector specific T cell responses in human subjects

Howles S, Guimarães-Walker A, Yang H, Hancock G, di Gleria K, Tarragona-Fiol T, Hayes P, Gilmour J, Bridgeman A, Hanke T, McMichael A, Dorrell L

Vaccination with a modified vaccinia virus Ankara (MVA)-vectored HIV-1 immunogen induces modest vector-specific T cell responses in human subjects. Vaccine 2010;28(45):7306-12 doi: 10.1016/j.vaccine.2010.08.077

Abstract

We investigated whether vaccination of healthy HIV-seronegative and HIV-1-seropositive antiretroviral therapy-treated subjects with recombinant modified vaccinia virus Ankara expressing an HIV-1 immunogen (MVA.HIVA) induced MVA-specific T cell responses. Using IFN-γ Elispot assays, we observed new or increased responses to MVA virus in 52% of HIV-seronegative subjects and 93% HIV-1 seropositive subjects; MVA-specific T cell frequencies were generally low and correlated poorly with T cell responses to the HIV-1 immunogen. In two vaccinees, responses were mapped to CD8+ T cell epitopes present in replication-competent vaccinia virus. These data support further evaluation of MVA as a viral vector for HIV-1 immunogens.

Scientific Publications

Elicitation of structure specific antibodies by epitope scaffolds

Ofek G, Guenaga FJ, Schief WR, Skinner J, Baker D, Wyatt R, Kwong PD

Elicitation of structure-specific antibodies by epitope scaffolds. Proc. Natl. Acad. Sci. U.S.A. 2010;107(42):17880-7 doi: 10.1073/pnas.1004728107

Abstract

Elicitation of antibodies against targets that are immunorecessive, cryptic, or transient in their native context has been a challenge for vaccine design. Here we demonstrate the elicitation of structure-specific antibodies against the HIV-1 gp41 epitope of the broadly neutralizing antibody 2F5. This conformationally flexible region of gp41 assumes mostly helical conformations but adopts a kinked, extended structure when bound by antibody 2F5. Computational techniques were employed to transplant the 2F5 epitope into select acceptor scaffolds. The resultant '2F5-epitope scaffolds' possessed nanomolar affinity for antibody 2F5 and a range of epitope flexibilities and antigenic specificities. Crystallographic characterization of the epitope scaffold with highest affinity and antigenic discrimination confirmed good to near perfect attainment of the target conformation for the gp41 molecular graft in free and 2F5-bound states, respectively. Animals immunized with 2F5-epitope scaffolds showed levels of graft-specific immune responses that correlated with graft flexibility (p < 0.04), while antibody responses against the graft-as dissected residue-by-residue with alanine substitutions-resembled more closely those of 2F5 than sera elicited with flexible or cyclized peptides, a resemblance heightened by heterologous prime-boost. Lastly, crystal structures of a gp41 peptide in complex with monoclonal antibodies elicited by the 2F5-epitope scaffolds revealed that the elicited antibodies induce gp41 to assume its 2F5-recognized shape. Epitope scaffolds thus provide a means to elicit antibodies that recognize a predetermined target shape and sequence, even if that shape is transient in nature, and a means by which to dissect factors influencing such elicitation.

Scientific Publications

Scaffolding to build a rational vaccine design strategy

Burton DR

Scaffolding to build a rational vaccine design strategy. Proc. Natl. Acad. Sci. U.S.A. 2010;107(42):17859-60 doi: 10.1073/pnas.1012923107

Scientific Publications

Expression system dependent modulation of HIV 1 envelope glycoprotein antigenicity and immunogenicity

Kong L, Sheppard NC, Stewart-Jones GB, Robson CL, Chen H, Xu X, Krashias G, Bonomelli C, Scanlan CN, Kwong PD, Jeffs SA, Jones IM, Sattentau QJ

Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J. Mol. Biol. 2010;403(1):131-47 doi: 10.1016/j.jmb.2010.08.033

Abstract

Recombinant expression systems differ in the type of glycosylation they impart on expressed antigens such as the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins, potentially affecting their biological properties. We performed head-to-head antigenic, immunogenic and molecular profiling of two distantly related Env surface (gp120) antigens produced in different systems: (a) mammalian (293 FreeStyle cells; 293F) cells in the presence of kifunensine, which impart only high-mannose glycans; (b) insect cells (Spodoptera frugiperda, Sf9), which confer mainly paucimannosidic glycans; (c) Sf9 cells recombinant for mammalian glycosylation enzymes (Sf9 Mimic), which impart high-mannose, hybrid and complex glycans without sialic acid; and (d) 293F cells, which impart high-mannose, hybrid and complex glycans with sialic acid. Molecular models revealed a significant difference in gp120 glycan coverage between the Sf9-derived and wild-type mammalian-cell-derived material that is predicted to affect ligand binding sites proximal to glycans. Modeling of solvent-exposed surface electrostatic potentials showed that sialic acid imparts a significant negative surface charge that may influence gp120 antigenicity and immunogenicity. Gp120 expressed in systems that do not incorporate sialic acid displayed increased ligand binding to the CD4 binding and CD4-induced sites compared to those expressed in the system that do, and imparted other more subtle differences in antigenicity in a gp120 subtype-specific manner. Non-sialic-acid-containing gp120 was significantly more immunogenic than the sialylated version when administered in two different adjuvants, and induced higher titers of antibodies competing for CD4 binding site ligand-gp120 interaction. These findings suggest that non-sialic-acid-imparting systems yield gp120 immunogens with modified antigenic and immunogenic properties, considerations that should be considered when selecting expression systems for glycosylated antigens to be used for structure-function studies and for vaccine use.

Scientific Publications

A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR, Finn MG, Burton DR, Wilson IA, Davis BG

A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc. Natl. Acad. Sci. U.S.A. 2010;107(40):17107-12 doi: 10.1073/pnas.1002717107

Abstract

Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.

Scientific Publications

Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques

Ng CT, Jaworski JP, Jayaraman P, Sutton WF, Delio P, Kuller L, Anderson D, Landucci G, Richardson BA, Burton DR, Forthal DN, Haigwood NL

Passive neutralizing antibody controls SHIV viremia and enhances B cell responses in infant macaques. Nat. Med. 2010;16(10):1117-9 doi: 10.1038/nm.2233

Abstract

Maternal HIV-1-specific antibodies are efficiently transferred to newborns, but their role in disease control is unknown. We administered neutralizing IgG, including the human neutralizing monoclonal IgG1b12, at levels insufficient to block infection, to six newborn macaques before oral challenge with simian-HIV strain SF162P3 (SHIV(SF162P3)). All of the macaques rapidly developed neutralizing antibodies and had significantly reduced plasma viremia for six months. These studies support the use of neutralizing antibodies in enhancing B cell responses and viral control in perinatal settings.

Scientific Publications

Very few substitutions in a germ line antibody are required to initiate significant domain exchange

Huber M, Le KM, Doores KJ, Fulton Z, Stanfield RL, Wilson IA, Burton DR

Very few substitutions in a germ line antibody are required to initiate significant domain exchange. J. Virol. 2010;84(20):10700-7 doi: 10.1128/JVI.01111-10

Abstract

2G12 is a broadly neutralizing anti-HIV-1 monoclonal human IgG1 antibody reactive with a high-mannose glycan cluster on the surface of glycoprotein gp120. A key feature of this very highly mutated antibody is domain exchange of the heavy-chain variable region (V(H)) with the V(H) of the adjacent Fab of the same immunoglobulin, which assembles a multivalent binding interface composed of two primary binding sites in close proximity. A non-germ line-encoded proline in the elbow between V(H) and C(H)1 and an extensive network of hydrophobic interactions in the V(H)/V(H)' interface have been proposed to be crucial for domain exchange. To investigate the origins of domain exchange, a germ line version of 2G12 that behaves as a conventional antibody was engineered. Substitution of 5 to 7 residues for those of the wild type produced a significant fraction of domain-exchanged molecules, with no evidence of equilibrium between domain-exchanged and conventional forms. Two substitutions not previously implicated, A(H14) and E(H75), are the most crucial for domain exchange, together with I(H19) at the V(H)/V(H)' interface and P(H113) in the elbow region. Structural modeling gave clues as to why these residues are essential for domain exchange. The demonstration that domain exchange can be initiated by a small number of substitutions in a germ line antibody suggests that the evolution of a domain-exchanged antibody response in vivo may be more readily achieved than considered to date.

Scientific Publications

HIV vaccines current status worldwide and in Africa

Fast PE, Kaleebu P

HIV vaccines: current status worldwide and in Africa. AIDS 2010;24 Suppl 4:S50-60 doi: 10.1097/01.aids.0000390707.58512.5e

Abstract

Since HIV-1 was identified, development of a preventive vaccine has been a major goal. Significant progress toward that goal has been made by 2010. In macaques, a vigorous T effector cell response has protected some animals from disease caused by simian immunodeficiency virus (SIV). Broadly, neutralizing human anti-HIV antibodies have been isolated and their structures, and targets are rapidly being elucidated. For the first time an AIDS vaccine has shown modest protective efficacy in a human clinical trial. To reach the final goal, there is a need for a coordinated global effort, including a range of approaches including novel high-throughput screening techniques, X-ray crystallography, and monoclonal antibody isolation, analysis of T cell responses and their impact on disease progression, human epidemiology, as well as targeted studies in nonhuman primates. African research teams as well as cohorts of healthy volunteers and HIV-infected individuals have contributed to HIV vaccine research and development in many important ways. It is essential that this work continue to speed the development and deployment of a vaccine suitable for African populations.

Scientific Publications

Antibody 2G12 recognizes di mannose equivalently in domain and nondomain exchanged forms but only binds the HIV 1 glycan shield if domain exchanged

Doores KJ, Fulton Z, Huber M, Wilson IA, Burton DR

Antibody 2G12 recognizes di-mannose equivalently in domain- and nondomain-exchanged forms but only binds the HIV-1 glycan shield if domain exchanged. J. Virol. 2010;84(20):10690-9 doi: 10.1128/JVI.01110-10

Abstract

The broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibody 2G12 targets the high-mannose cluster on the glycan shield of HIV-1. 2G12 has a unique V(H) domain-exchanged structure, with a multivalent binding surface that includes two primary glycan binding sites. The high-mannose cluster is an attractive target for HIV-1 vaccine design, but so far, no carbohydrate immunogen has elicited 2G12-like antibodies. Important questions remain as to how this domain exchange arose in 2G12 and how this unusual event conferred unexpected reactivity against the glycan shield of HIV-1. In order to address these questions, we generated a nondomain-exchanged variant of 2G12 to produce a conventional Y/T-shaped antibody through a single amino acid substitution (2G12 I19R) and showed that, as for the 2G12 wild type (2G12 WT), this antibody is able to recognize the same Manα1,2Man motif on recombinant gp120, Candida albicans, and synthetic glycoconjugates. However, the nondomain-exchanged variant of 2G12 is unable to bind the cluster of mannose moieties on the surface of HIV-1. Crystallographic analysis of 2G12 I19R in complex with Manα1,2Man revealed an adaptable hinge between V(H) and C(H)1 that enables the V(H) and V(L) domains to assemble in such a way that the configuration of the primary binding site and its interaction with disaccharide are remarkably similar in the nondomain-exchanged and domain-exchanged forms. Together with data that suggest that very few substitutions are required for domain exchange, the results suggest potential mechanisms for the evolution of domain-exchanged antibodies and immunization strategies for eliciting such antibodies.

Scientific Publications

Variable loop glycan dependency of the broad and potent HIV 1 neutralizing antibodies PG9 and PG16

Doores KJ, Burton DR

Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. J. Virol. 2010;84(20):10510-21 doi: 10.1128/JVI.00552-10

Abstract

The HIV-1-specific antibodies PG9 and PG16 show marked cross-isolate neutralization breadth and potency. Antibody neutralization has been shown to be dependent on the presence of N-linked glycosylation at position 160 in gp120. We show here that (i) the loss of several key glycosylation sites in the V1, V2, and V3 loops; (ii) the generation of pseudoviruses in the presence of various glycosidase inhibitors; and (iii) the growth of pseudoviruses in a mutant cell line (GnT1(-/-)) that alters envelope glycosylation patterns all have significant effects on the sensitivity of virus to neutralization by PG9 and PG16. However, the interaction of antibody is not inhibited by sugar monosaccharides corresponding to those found in glycans on the HIV surface. We show that some of the glycosylation effects described are isolate dependent and others are universal and can be used as diagnostic for the presence of PG9 and PG16-like antibodies in the sera of HIV-1-infected patients. The results suggest that PG9 and PG16 recognize a conformational epitope that is dependent on glycosylation at specific variable loop N-linked sites. This information may be valuable for the design of immunogens to elicit PG9 and PG16-like antibodies, as well as constructs for cocrystallization studies.

Scientific Publications

Polyreactivity increases the apparent affinity of anti HIV antibodies by heteroligation

Mouquet H, Scheid JF, Zoller MJ, Krogsgaard M, Ott RG, Shukair S, Artyomov MN, Pietzsch J, Connors M, Pereyra F, Walker BD, Ho DD, Wilson PC, Seaman MS, Eisen HN, Chakraborty AK, Hope TJ, Ravetch JV, Wardemann H, Nussenzweig MC

Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 2010;467(7315):591-5 doi: 10.1038/nature09385

Abstract

During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.

Scientific Publications

Safety and immunogenicity study of Multiclade HIV 1 adenoviral vector vaccine alone or as boost following a multiclade HIV 1 DNA vaccine in Africa

Jaoko W, Karita E, Kayitenkore K, Omosa-Manyonyi G, Allen S, Than S, Adams EM, Graham BS, Koup RA, Bailer RT, Smith C, Dally L, Farah B, Anzala O, Muvunyi CM, Bizimana J, Tarragona-Fiol T, Bergin PJ, Hayes P, Ho M, Loughran K, Komaroff W, Stevens G, Thomson H, Boaz MJ, Cox JH, Schmidt C, Gilmour J, Nabel GJ, Fast P, Bwayo J

Safety and immunogenicity study of Multiclade HIV-1 adenoviral vector vaccine alone or as boost following a multiclade HIV-1 DNA vaccine in Africa. PLoS ONE 2010;5(9):e12873 doi: 10.1371/journal.pone.0012873

Abstract

We conducted a double-blind, randomized, placebo-controlled Phase I study of a recombinant replication-defective adenovirus type 5 (rAd5) vector expressing HIV-1 Gag and Pol from subtype B and Env from subtypes A, B and C, given alone or as boost following a DNA plasmid vaccine expressing the same HIV-1 proteins plus Nef, in 114 healthy HIV-uninfected African adults.

Scientific Publications

HIV AIDS vaccines and alternate strategies for treatment and prevention

Voronin Y, Phogat S

HIV/AIDS: vaccines and alternate strategies for treatment and prevention. Ann. N. Y. Acad. Sci. 2010;1205 Suppl 1:E1-9 doi: 10.1111/j.1749-6632.2010.05759.x

Abstract

The symposium 'HIV/AIDS: Vaccines and Alternate Strategies for Treatment and Prevention' brought together HIV vaccine researchers to discuss the latest developments in the field. From basic discoveries in virus diversity and mechanisms of neutralization by antibodies to nonhuman primate research and clinical trials of vaccine candidates in volunteers, scientists are making great strides in understanding the mechanisms that may protect against HIV and pathways to achieve this protection through vaccination.