Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Structural and immunologic correlates of chemically stabilized HIV 1 envelope glycoproteins

Schiffner T, Pallesen J, Russell RA, Dodd J, de Val N, LaBranche CC, Montefiori D, Tomaras GD, Shen X, Harris SL, Moghaddam AE, Kalyuzhniy O, Sanders RW, McCoy LE, Moore JP, Ward AB, Sattentau QJ

Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathog. 2018;14(5):e1006986 doi: 10.1371/journal.ppat.1006986

Abstract

Inducing broad spectrum neutralizing antibodies against challenging pathogens such as HIV-1 is a major vaccine design goal, but may be hindered by conformational instability within viral envelope glycoproteins (Env). Chemical cross-linking is widely used for vaccine antigen stabilization, but how this process affects structure, antigenicity and immunogenicity is poorly understood and its use remains entirely empirical. We have solved the first cryo-EM structure of a cross-linked vaccine antigen. The 4.2 Å structure of HIV-1 BG505 SOSIP soluble recombinant Env in complex with a CD4 binding site-specific broadly neutralizing antibody (bNAb) Fab fragment reveals how cross-linking affects key properties of the trimer. We observed density corresponding to highly specific glutaraldehyde (GLA) cross-links between gp120 monomers at the trimer apex and between gp120 and gp41 at the trimer interface that had strikingly little impact on overall trimer conformation, but critically enhanced trimer stability and improved Env antigenicity. Cross-links were also observed within gp120 at sites associated with the N241/N289 glycan hole that locally modified trimer antigenicity. In immunogenicity studies, the neutralizing antibody response to cross-linked trimers showed modest but significantly greater breadth against a global panel of difficult-to-neutralize Tier-2 heterologous viruses. Moreover, the specificity of autologous Tier-2 neutralization was modified away from the N241/N289 glycan hole, implying a novel specificity. Finally, we have investigated for the first time T helper cell responses to next-generation soluble trimers, and report on vaccine-relevant immunodominant responses to epitopes within BG505 that are modified by cross-linking. Elucidation of the structural correlates of a cross-linked viral glycoprotein will allow more rational use of this methodology for vaccine design, and reveals a strategy with promise for eliciting neutralizing antibodies needed for an effective HIV-1 vaccine.

Scientific Publications

Cleavage Independent HIV 1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies

Bale S, Martiné A, Wilson R, Behrens AJ, Le Fourn V, de Val N, Sharma SK, Tran K, Torres JL, Girod PA, Ward AB, Crispin M, Wyatt RT

Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. Front Immunol 2018;9:1116 doi: 10.3389/fimmu.2018.01116

Abstract

Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan 'hole' naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 , elicited low-to-no tier 1 virus neutralization , indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses .

Scientific Publications

Prediction of extended high viremia among newly HIV 1 infected persons in sub Saharan Africa

Powers KA, Price MA, Karita E, Kamali A, Kilembe W, Allen S, Hunter E, Bekker LG, Lakhi S, Inambao M, Anzala O, Latka MH, Fast PE, Gilmour J, Sanders EJ

Prediction of extended high viremia among newly HIV-1-infected persons in sub-Saharan Africa. PLoS ONE 2018;13(4):e0192785 doi: 10.1371/journal.pone.0192785

Abstract

Prompt identification of newly HIV-infected persons, particularly those who are most at risk of extended high viremia (EHV), allows important clinical and transmission prevention benefits. We sought to determine whether EHV could be predicted during early HIV infection (EHI) from clinical, demographic, and laboratory indicators in a large HIV-1 incidence study in Africa.

Scientific Publications

cGMP production and analysis of BG505 SOSIP 664 an extensively glycosylated trimeric HIV 1 envelope glycoprotein vaccine candidate

Dey AK, Cupo A, Ozorowski G, Sharma VK, Behrens AJ, Go EP, Ketas TJ, Yasmeen A, Klasse PJ, Sayeed E, Desaire H, Crispin M, Wilson IA, Sanders RW, Hassell T, Ward AB, Moore JP

cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIV-1 envelope glycoprotein vaccine candidate. Biotechnol. Bioeng. 2018;115(4):885-899 doi: 10.1002/bit.26498

Abstract

We describe the properties of BG505 SOSIP.664 HIV-1 envelope glycoprotein trimers produced under current Good Manufacturing Practice (cGMP) conditions. These proteins are the first of a new generation of native-like trimers that are the basis for many structure-guided immunogen development programs aimed at devising how to induce broadly neutralizing antibodies (bNAbs) to HIV-1 by vaccination. The successful translation of this prototype demonstrates the feasibility of producing similar immunogens on an appropriate scale and of an acceptable quality for Phase I experimental medicine clinical trials. BG505 SOSIP.664 trimers are extensively glycosylated, contain numerous disulfide bonds and require proteolytic cleavage, all properties that pose a substantial challenge to cGMP production. Our strategy involved creating a stable CHO cell line that was adapted to serum-free culture conditions to produce envelope glycoproteins. The trimers were then purified by chromatographic methods using a 2G12 bNAb affinity column and size-exclusion chromatography. The chosen procedures allowed any adventitious viruses to be cleared from the final product to the required extent of >12 log . The final cGMP production run yielded 3.52 g (peptidic mass) of fully purified trimers (Drug Substance) from a 200 L bioreactor, a notable yield for such a complex glycoprotein. The purified trimers were fully native-like as judged by negative-stain electron microscopy, and were stable over a multi-month period at room temperature or below and for at least 1 week at 50°C. Their antigenicity, disulfide bond patterns, and glycan composition were consistent with trimers produced on a research laboratory scale. The methods reported here should pave the way for the cGMP production of other native-like Env glycoprotein trimers of various designs and genotypes.

Scientific Publications

Utility of Different Adherence Measures for PrEP Patterns and Incremental Value

Abaasa A, Hendrix C, Gandhi M, Anderson P, Kamali A, Kibengo F, Sanders EJ, Mutua G, Bumpus NN, Priddy F, Haberer JE

Utility of Different Adherence Measures for PrEP: Patterns and Incremental Value. AIDS Behav 2018;22(4):1165-1173 doi: 10.1007/s10461-017-1951-y

Abstract

Measuring PrEP adherence remains challenging. In 2009-2010, the International AIDS Vaccine Initiative randomized phase II trial participants to daily tenofovir disoproxil fumarate/emtricitabine or placebo in Uganda and Kenya. Adherence was measured by electronic monitoring (EM), self-report (SR), and drug concentrations in plasma and hair. Each adherence measure was categorised as low, moderate, or high and also considered continuously; the incremental value of combining measures was determined. Forty-five participants were followed over 4 months. Discrimination for EM adherence by area under receiver operating curves (AROC) was poor for SR (0.53) and best for hair (AROC 0.85). When combining hair with plasma or hair with self-report, discrimination was improved (AROC > 0.9). Self-reported adherence was of low utility by itself. Hair level was the single best PK measure to predict EM-assessed adherence; the other measurements had lower discrimination values. Combining short-term (plasma) and long-term (hair) metrics could be useful to assess patterns of drug-taking in the context of PrEP.

Scientific Publications

A Neutralizing Antibody Recognizing Primarily N Linked Glycan Targets the Silent Face of the HIV Envelope

Zhou T, Zheng A, Baxa U, Chuang GY, Georgiev IS, Kong R, O'Dell S, Shahzad-Ul-Hussan S, Shen CH, Tsybovsky Y, Bailer RT, Gift SK, Louder MK, McKee K, Rawi R, Stevenson CH, Stewart-Jones GBE, Taft JD, Waltari E, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CD, Wu CY, Mullikin JC, Bewley CA, Burton DR, Polonis VR, Shapiro L, Wong CH, Mascola JR, Kwong PD, Wu X

A Neutralizing Antibody Recognizing Primarily N-Linked Glycan Targets the Silent Face of the HIV Envelope. Immunity 2018;48(3):500-513.e6 doi: S1074-7613(18)30071-2

Abstract

Virtually the entire surface of the HIV-1-envelope trimer is recognized by neutralizing antibodies, except for a highly glycosylated region at the center of the 'silent face' on the gp120 subunit. From an HIV-1-infected donor, #74, we identified antibody VRC-PG05, which neutralized 27% of HIV-1 strains. The crystal structure of the antigen-binding fragment of VRC-PG05 in complex with gp120 revealed an epitope comprised primarily of N-linked glycans from N262, N295, and N448 at the silent face center. Somatic hypermutation occurred preferentially at antibody residues that interacted with these glycans, suggesting somatic development of glycan recognition. Resistance to VRC-PG05 in donor #74 involved shifting of glycan-N448 to N446 or mutation of glycan-proximal residue E293. HIV-1 neutralization can thus be achieved at the silent face center by glycan-recognizing antibody; along with other known epitopes, the VRC-PG05 epitope completes coverage by neutralizing antibody of all major exposed regions of the prefusion closed trimer.

Scientific Publications

Envelope proteins of two HIV 1 clades induced different epitope specific antibody response

Shrivastava T, Samal S, Tyagi AK, Goswami S, Kumar N, Ozorowski G, Ward AB, Chakrabarti BK

Envelope proteins of two HIV-1 clades induced different epitope-specific antibody response. Vaccine 2018;36(12):1627-1636 doi: S0264-410X(18)30154-3

Abstract

Using HIV-1 envelope protein (Env)-based immunogens that closely mimic the conformation of functional HIV-1 Envs and represent the isolates prevalent in relevant geographical region is considered a rational approach towards developing HIV vaccine. We recently reported that like clade B Env, JRFL, membrane bound Indian clade C Env, 4-2.J41 is also efficiently cleaved and displays desirable antigenic properties for plasmid DNA immunization. Here, we evaluated the immune response in rabbit by injecting the animals with plasmid expressing membrane bound efficiently cleaved 4-2.J41 Env followed by its gp140-foldon (gp140-fd) protein boost. The purified 4-2.J41-gp140-fd protein is recognized by a wide panel of broadly neutralizing antibodies (bNAbs) including the quaternary conformation-dependent antibody, PGT145 with high affinity. We have also evaluated and compared the quality of antibody response elicited in rabbits after immunizing with plasmid DNA expressing the membrane bound efficiently cleaved Env followed by gp140-fd proteins boost with either of clade C Env, 4-2.J41 or clade B Env, JRFL or in combination. In comparison to JRFL group, 4-2.J41 group elicited autologous as well as limited low level cross clade neutralizing antibody response. Preliminary epitope-mapping of sera from animals show that in contrast to JRFL group, no reactivity to either linear peptides or V3-loop is detected in 4-2.J41 group. Furthermore, the presence of conformation-specific antibody in sera from animals immunized with 4-2.J41 Env is observed. However, unlike JRFL group, in 4-2.J41 group of animals, CD4-binding site-directed antibodies cannot be detected. Additionally, we have demonstrated that the quality of antibody response in combination group is guided by JRFL Env-based immunogen suggesting that the selection and the quality of Envs in multicade candidate vaccine are important factors to elicit desirable response.

Scientific Publications

Perspective APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution

Venkatesan S, Rosenthal R, Kanu N, McGranahan N, Bartek J, Quezada SA, Hare J, Harris RS, Swanton C

Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol. 2018;29(3):563-572 doi: 10.1093/annonc/mdy003

Abstract

The apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) mutational signature has only recently been detected in a multitude of cancers through next-generation sequencing. In contrast, APOBEC has been a focus of virology research for over a decade. Many lessons learnt regarding APOBEC within virology are likely to be applicable to cancer. In this review, we explore the parallels between the role of APOBEC enzymes in HIV and cancer evolution. We discuss data supporting the role of APOBEC mutagenesis in creating HIV genome heterogeneity, drug resistance, and immune escape variants. We hypothesize similar functions of APOBEC will also hold true in cancer.

Scientific Publications

Broad neutralization response in a subset of HIV 1 subtype C infected viraemic non progressors from southern India

Nandagopal P, Bhattacharya J, Srikrishnan AK, Goyal R, Ravichandran Swathirajan C, Patil S, Saravanan S, Deshpande S, Vignesh R, Solomon SS, Singla N, Mukherjee J, Murugavel KG

Broad neutralization response in a subset of HIV-1 subtype C-infected viraemic non-progressors from southern India. J. Gen. Virol. 2018; doi: 10.1099/jgv.0.001016

Abstract

Broadly neutralizing antibodies (bnAbs) have been considered to be potent therapeutic tools and potential vaccine candidates to enable protection against various clades of human immunodeficiency virus (HIV). The generation of bnAbs has been associated with enhanced exposure to antigen, high viral load and low CD4+ T cell counts, among other factors. However, only limited data are available on the generation of bnAbs in viraemic non-progressors that demonstrate moderate to high viraemia. Further, since HIV-1 subtype C viruses account for more than 50 % of global HIV infections, the identification of bnAbs with novel specificities is crucial to enable the development of potent tools to aid in HIV therapy and prevention. In the present study, we analysed and compared the neutralization potential of responses in 70 plasma samples isolated from ART-naïve HIV-1 subtype C-infected individuals with various disease progression profiles against a panel of 30 pseudoviruses. Among the seven samples that exhibited a neutralization breadth of ≥70 %, four were identified as 'elite neutralizers', and three of these were from viraemic non-progressors while the fourth was from a typical progressor. Analysis of the neutralization specificities revealed that none of the four elite neutralizers were reactive to epitopes in the membrane proximal external region (MPER), CD4-binding site and V1V2 or V3 glycan. However, two of the four elite neutralizers exhibited enhanced sensitivity towards viruses lacking N332 glycan, indicating high neutralization potency. Overall, our findings indicate that the identification of potent neutralization responses with distinct epitope specificities is possible from the as yet unexplored Indian population, which has a high prevalence of HIV-1 subtype C infection.

Scientific Publications

Global site specific N glycosylation analysis of HIV envelope glycoprotein

Cao L, Diedrich JK, Kulp DW, Pauthner M, He L, Park SR, Sok D, Su CY, Delahunty CM, Menis S, Andrabi R, Guenaga J, Georgeson E, Kubitz M, Adachi Y, Burton DR, Schief WR, Yates JR, Paulson JC

Global site-specific N-glycosylation analysis of HIV envelope glycoprotein. Nat Commun 2017;8:14954 doi: 10.1038/ncomms14954

Abstract

HIV-1 envelope glycoprotein (Env) is the sole target for broadly neutralizing antibodies (bnAbs) and the focus for design of an antibody-based HIV vaccine. The Env trimer is covered by ∼90N-linked glycans, which shield the underlying protein from immune surveillance. bNAbs to HIV develop during infection, with many showing dependence on glycans for binding to Env. The ability to routinely assess the glycan type at each glycosylation site may facilitate design of improved vaccine candidates. Here we present a general mass spectrometry-based proteomics strategy that uses specific endoglycosidases to introduce mass signatures that distinguish peptide glycosites that are unoccupied or occupied by high-mannose/hybrid or complex-type glycans. The method yields >95% sequence coverage for Env, provides semi-quantitative analysis of the glycosylation status at each glycosite. We find that most glycosites in recombinant Env trimers are fully occupied by glycans, varying in the proportion of high-mannose/hybrid and complex-type glycans.

Scientific Publications

Evaluation of HIV 1 rapid tests and identification of alternative testing algorithms for use in Uganda

Kaleebu P, Kitandwe PK, Lutalo T, Kigozi A, Watera C, Nanteza MB, Hughes P, Musinguzi J, Opio A, Downing R, Mbidde EK

Evaluation of HIV-1 rapid tests and identification of alternative testing algorithms for use in Uganda. BMC Infect. Dis. 2018;18(1):93 doi: 10.1186/s12879-018-3001-4

Abstract

The World Health Organization recommends that countries conduct two phase evaluations of HIV rapid tests (RTs) in order to come up with the best algorithms. In this report, we present the first ever such evaluation in Uganda, involving both blood and oral based RTs. The role of weak positive (WP) bands on the accuracy of the individual RT and on the algorithms was also investigated.

Scientific Publications

Precursor Frequency and Affinity Determine B Cell Competitive Fitness in Germinal Centers Tested with Germline Targeting HIV Vaccine Immunogens

Abbott RK, Lee JH, Menis S, Skog P, Rossi M, Ota T, Kulp DW, Bhullar D, Kalyuzhniy O, Havenar-Daughton C, Schief WR, Nemazee D, Crotty S

Precursor Frequency and Affinity Determine B Cell Competitive Fitness in Germinal Centers, Tested with Germline-Targeting HIV Vaccine Immunogens. Immunity 2018;48(1):133-146.e6 doi: S1074-7613(17)30524-1

Abstract

How precursor frequencies and antigen affinities impact interclonal B cell competition is a particularly relevant issue for candidate germline-targeting HIV vaccine designs because of the in vivo rarity of naive B cells that recognize broadly neutralizing epitopes. Knowing the frequencies and affinities of HIV-specific VRC01-class naive human B cells, we transferred B cells with germline VRC01 B cell receptors into congenic recipients to elucidate the roles of precursor frequency, antigen affinity, and avidity on B cell responses following immunization. All three factors were interdependently limiting for competitive success of VRC01-class B cells. In physiological high-affinity conditions using a multivalent immunogen, rare VRC01-class B cells successfully competed in germinal centers (GC), underwent extensive somatic hypermutation, and differentiated into memory B cells. The data reveal dominant influences of precursor frequency, affinity, and avidity for interclonal GC competition and indicate that germline-targeting immunogens can overcome these challenges with high-affinity multimeric designs.

Scientific Publications

Elevated expression impairs HIV control through inhibition of NKG2A expressing cells

Ramsuran V, Naranbhai V, Horowitz A, Qi Y, Martin MP, Yuki Y, Gao X, Walker-Sperling V, Del Prete GQ, Schneider DK, Lifson JD, Fellay J, Deeks SG, Martin JN, Goedert JJ, Wolinsky SM, Michael NL, Kirk GD, Buchbinder S, Haas D, Ndung'u T, Goulder P, Parham P, Walker BD, Carlson JM, Carrington M

Elevated expression impairs HIV control through inhibition of NKG2A-expressing cells. Science 2018;359(6371):86-90 doi: 10.1126/science.aam8825

Abstract

The highly polymorphic human leukocyte antigen () locus encodes cell surface proteins that are critical for immunity. expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher levels confer poorer control of HIV. Elevated expression provides enhanced levels of an HLA-A-derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease.