Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Elicitation of neutralizing antibodies with DNA vaccines expressing soluble stabilized human immunodeficiency virus type 1 envelope glycoprotein trimers conjugated to C3d

Bower JF, Yang X, Sodroski J, Ross TM

Elicitation of neutralizing antibodies with DNA vaccines expressing soluble stabilized human immunodeficiency virus type 1 envelope glycoprotein trimers conjugated to C3d. J. Virol. 2004;78(9):4710-9

Abstract

DNA vaccines expressing the envelope (Env) of human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting immune responses. Oligomeric or trimeric (gp140) forms of Env that more closely mimic the native proteins on the virion are often more effective immunogens than monomeric (gp120) envelopes. In this study, several forms of Env constructed from the HIV-1 isolate YU-2 (HIV-1(YU-2)) were tested for their immunogenic potential: a trimeric form of uncleaved (-) Env stabilized with a synthetic trimer motif isolated from the fibritin (FT) protein of the T4 bacteriophage, sgp140(YU-2)(-/FT), was compared to sgp140(YU-2)(-) without a synthetic trimerization domain, as well as to monomeric gp120(YU-2). DNA plasmids were constructed to express Env alone or fused to various copies of murine C3d (mC3d). BALB/c mice were vaccinated (day 1 and week 4) with DNA expressing a codon-optimized envelope gene insert, alone or fused to mC3d. Mice were subsequently boosted (week 8) with the DNA or recombinant Env protein. All mice had high anti-Env antibody titers regardless of the use of mC3d. Sera from mice vaccinated with DNA expressing non-C3d-fused trimers elicited neutralizing antibodies against homologous HIV-1(YU-2) virus infection in vitro. In contrast, sera from mice inoculated with DNA expressing Env-C3d protein trimers elicited antibody that neutralized both homologous HIV-1(YU-2) and heterologous HIV-1(ADA), albeit at low titers. Therefore, DNA vaccines expressing trimeric envelopes coupled to mC3d, expressed in vivo from codon-optimized sequences, elicit low titers of neutralizing antibodies against primary isolates of HIV-1.

Scientific Publications

Determinants of enrollment in a preventive HIV vaccine trial hypothetical versus actual willingness and barriers to participation

Buchbinder SP, Metch B, Holte SE, Scheer S, Coletti A, Vittinghoff E

Determinants of enrollment in a preventive HIV vaccine trial: hypothetical versus actual willingness and barriers to participation. J. Acquir. Immune Defic. Syndr. 2004;36(1):604-12

Abstract

To compare hypothetical and actual willingness to enroll in a preventive HIV vaccine trial and identify factors affecting enrollment.

Scientific Publications

Neutralization sensitivity of a simian human immunodeficiency virus SHIV HXBc2P 3 2N isolated from an infected rhesus macaque with neurological disease

Song B, Cayabyab M, Phan N, Wang L, Axthelm MK, Letvin NL, Sodroski JG

Neutralization sensitivity of a simian-human immunodeficiency virus (SHIV-HXBc2P 3.2N) isolated from an infected rhesus macaque with neurological disease. Virology 2004;322(1):168-81

Abstract

Simian-human immunodeficiency virus (SHIV) chimerae, after in vivo passage in monkeys, can induce acquired immunodeficiency syndrome (AIDS)-like illness and death. A monkey infected with the molecularly cloned, pathogenic SHIV-HXBc2P 3.2 exhibited multifocal granulomatous pneumonia as well as progressive neurological impairment characterized by tremors and pelvic limb weakness. SHIV-HXBc2P 3.2N was isolated from brain tissue explants and characterized. Viruses with the envelope glycoproteins of SHIV-HXBc2P 3.2N exhibited increased sensitivity to soluble CD4 and several neutralizing antibodies compared with viruses with the parental SHIV-HXBc2P 3.2 envelope glycoproteins. By contrast, viruses with SHIV-HXBc2P 3.2 and SHIV-HXBc2P 3.2N envelope glycoproteins were neutralized equivalently by 2G12 and 2F5 antibodies, which are rarely elicited in HIV-1-infected humans. A constellation of changes involving both gp120 and gp41 envelope glycoproteins was responsible for the difference in susceptibility to neutralization by most antibodies. Surprisingly, the gain of an N-linked glycosylation site in the gp41 ectodomain contributed greatly to neutralization sensitivity. Thus, the environment of the central nervous system, particularly in the context of immunodeficiency, allows the evolution of immunodeficiency viruses with greater susceptibility to neutralization by antibodies.

Scientific Publications

HIV transmission closing all the doors

Davis CW, Doms RW

HIV transmission: closing all the doors. J. Exp. Med. 2004;199(8):1037-40

Scientific Publications

Correlation between env V1 V2 region diversification and neutralizing antibodies during primary infection by simian immunodeficiency virus sm in rhesus macaques

Rybarczyk BJ, Montefiori D, Johnson PR, West A, Johnston RE, Swanstrom R

Correlation between env V1/V2 region diversification and neutralizing antibodies during primary infection by simian immunodeficiency virus sm in rhesus macaques. J. Virol. 2004;78(7):3561-71

Abstract

Evolution of the domain encoding the V1/V2 variable region of the simian immunodeficiency virus sm (SIVsm) envelope (env) gene was analyzed in relation to route of virus challenge, virus load, and neutralizing antibody (NAb) titers during primary infection of rhesus macaques with the pathogenic SIVsmE660 isolate. In this model system animals are initially infected with multiple viruses as evidenced by the presence of multiple V1/V2 genotypic variants that could be resolved by using a heteroduplex tracking assay (HTA). Overlapping subsets of the multiple variants were established in each animal. There was no selection for the establishment of specific variants in comparing intravenous- and intrarectal-challenged macaques at week 2 postinfection, suggesting that no genotypic selection occurred at the mucosal surface. There was an initial period of significant stability of the V1/V2 variants. Macaques challenged intravenously displayed subsequent V1/V2 diversification significantly earlier than macaques challenged intrarectally and well past the initial resolution of viremia. The time when SIVsmE660-specific NAbs reached a threshold titer of 100 was significantly correlated with the timing of V1/V2 diversification, even though antibodies to the Env protein could be detected much earlier. The time when NAbs reached a titer of 400 was significantly correlated with virus load late in infection. These results show that the route of infection affects the timing of V1/V2 diversification and that this diversification is correlated with the maturation of a specific NAb response. However, prior immunization capable of priming an anamnestic Env antibody response did not accelerate V1/V2 diversification. This result suggests that diversification of the SIV env V1/V2 region is the result of a type-specific antibody response.

Scientific Publications

Acute HIV revisited new opportunities for treatment and prevention

Pilcher CD, Eron JJ, Galvin S, Gay C, Cohen MS

Acute HIV revisited: new opportunities for treatment and prevention. J. Clin. Invest. 2004;113(7):937-45

Abstract

Inability to recognize incident infection has traditionally limited both scientific and public health approaches to HIV disease. Recently, some laboratories have begun adding HIV nucleic acid amplification testing to HIV diagnostic testing algorithms so that acute (antibody-negative) HIV infections can be routinely detected within the first 1-3 weeks of exposure. In this review article, we will highlight critical opportunities for HIV treatment and prevention that are presented by these diagnostic strategies.

Scientific Publications

Analysis of the HIV 1 gp41 specific immune response using a multiplexed antibody detection assay

Opalka D, Pessi A, Bianchi E, Ciliberto G, Schleif W, McElhaugh M, Danzeisen R, Geleziunas R, Miller M, Eckert DM, Bramhill D, Joyce J, Cook J, Magilton W, Shiver J, Emini E, Esser MT

Analysis of the HIV-1 gp41 specific immune response using a multiplexed antibody detection assay. J. Immunol. Methods 2004;287(1-2):49-65

Abstract

A fluorescence-based, multiplexed, antibody-binding and mapping assay was developed to characterize antibody responses in HIV-1-infected individuals to the ectodomain of the HIV-1 gp41 envelope glycoprotein. The antigen panel included intact recombinant gp41, the fusion peptide region, the polar region, the N-heptad region, the C-heptad region as well as overlapping epitopes in the 2F5 and 4E10 monoclonal antibody-binding regions. The panel included both native and constrained peptides specifically designed to mimic putative gp41 prefusion and fusion intermediates. The results of these analyses revealed a broad pattern of immune responses against the test antigens, suggesting that none of these gp41 regions are immunologically silent. The HIV-1-positive sera were also evaluated using infectivity inhibition assays. No correlation was evident between the breadth or magnitude of specific anti-gp41 reactivities and virus neutralization potency. These evaluations demonstrated the substantial potential of the multiplexed antibody binding and mapping assay for rapid and sensitive analysis of complex antibody responses.

Scientific Publications

A human immunodeficiency virus 1 HIV 1 clade A vaccine in clinical trials stimulation of HIV specific T cell responses by DNA and recombinant modified vaccinia virus Ankara MVA vaccines in humans

Mwau M, Cebere I, Sutton J, Chikoti P, Winstone N, Wee EG, Beattie T, Chen YH, Dorrell L, McShane H, Schmidt C, Brooks M, Patel S, Roberts J, Conlon C, Rowland-Jones SL, Bwayo JJ, McMichael AJ, Hanke T

A human immunodeficiency virus 1 (HIV-1) clade A vaccine in clinical trials: stimulation of HIV-specific T-cell responses by DNA and recombinant modified vaccinia virus Ankara (MVA) vaccines in humans. J. Gen. Virol. 2004;85(Pt 4):911-9

Abstract

The immunogenicities of candidate DNA- and modified vaccinia virus Ankara (MVA)-vectored human immunodeficiency virus (HIV) vaccines were evaluated on their own and in a prime-boost regimen in phase I clinical trials in healthy uninfected individuals in the United Kingdom. Given the current lack of approaches capable of inducing broad HIV-neutralizing antibodies, the pTHr.HIVA DNA and MVA.HIVA vaccines focus solely on the induction of cell-mediated immunity. The vaccines expressed a common immunogen, HIVA, which consists of consensus HIV-1 clade A Gag p24/p17 proteins fused to a string of clade A-derived epitopes recognized by cytotoxic T lymphocytes (CTLs). Volunteers' fresh peripheral blood mononuclear cells were tested for HIV-specific responses in a validated gamma interferon enzyme-linked immunospot (ELISPOT) assay using four overlapping peptide pools across the Gag domain and three pools of known CTL epitopes present in all of the HIVA protein. Both the DNA and the MVA vaccines alone and in a DNA prime-MVA boost combination were safe and induced HIV-specific responses in 14 out of 18, seven out of eight and eight out of nine volunteers, respectively. These results are very encouraging and justify further vaccine development.

Scientific Publications

Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS 806 and 155

Madani N, Perdigoto AL, Srinivasan K, Cox JM, Chruma JJ, LaLonde J, Head M, Smith AB, Sodroski JG

Localized changes in the gp120 envelope glycoprotein confer resistance to human immunodeficiency virus entry inhibitors BMS-806 and #155. J. Virol. 2004;78(7):3742-52

Abstract

BMS-806 and the related compound, #155, are novel inhibitors of human immunodeficiency virus type 1 (HIV-1) entry that bind the gp120 exterior envelope glycoprotein. BMS-806 and #155 block conformational changes in the HIV-1 envelope glycoproteins that are induced by binding to the host cell receptor, CD4. We tested a panel of HIV-1 envelope glycoprotein mutants and identified several that were resistant to the antiviral effects of BMS-806 and #155. In the CD4-bound conformation of gp120, the amino acid residues implicated in BMS-806 and #155 resistance line the 'phenylalanine 43 cavity' and a water-filled channel that extends from this cavity to the inner domain. Structural considerations suggest a model in which BMS-806 and #155 bind gp120 prior to receptor binding and, upon CD4 binding, are accommodated in the Phe-43 cavity and adjacent channel. The integrity of the nearby V1/V2 variable loops and N-linked carbohydrates on the V1/V2 stem indirectly influences sensitivity to the drugs. A putative binding site for BMS-806 and #155 between the gp120 receptor-binding regions and the inner domain, which is thought to interact with the gp41 transmembrane envelope glycoprotein, helps to explain the mode of action of these drugs.

Scientific Publications

Repeated low dose mucosal simian immunodeficiency virus SIVmac239 challenge results in the same viral and immunological kinetics as high dose challenge a model for the evaluation of vaccine efficacy in nonhuman primates

McDermott AB, Mitchen J, Piaskowski S, De Souza I, Yant LJ, Stephany J, Furlott J, Watkins DI

Repeated low-dose mucosal simian immunodeficiency virus SIVmac239 challenge results in the same viral and immunological kinetics as high-dose challenge: a model for the evaluation of vaccine efficacy in nonhuman primates. J. Virol. 2004;78(6):3140-4

Abstract

Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides a relevant model for the assessment of human immunodeficiency virus (HIV) vaccine strategies. To ensure that all macaques become infected, the vaccinees and controls are exposed to large doses of pathogenic SIV. These nonphysiological high-dose challenges may adversely affect vaccine evaluation by overwhelming potentially efficacious vaccine responses. To determine whether a more physiologically relevant low-dose challenge can initiate infection and cause disease in Indian rhesus macaques, we used a repeated low-dose challenge strategy designed to reduce the viral inoculum to more physiologically relevant doses. In an attempt to more closely mimic challenge with HIV, we administered repeated mucosal challenges with 30, 300, and 3,000 50% tissue culture infective doses (TCID(50)) of pathogenic SIVmac239 to six animals in three groups. Infection was assessed by sensitive quantitative reverse transcription-PCR and was achieved following a mean of 8, 5.5, and 1 challenge(s) in the 30, 300, and 3,000 TCID(50) groups, respectively. Mortality, humoral immune responses, and peak plasma viral kinetics were similar in five of six animals, regardless of challenge dose. Interestingly, macaques challenged with lower doses of SIVmac239 developed broad T-cell immune responses as assessed by ELISPOT assay. This low-dose repeated challenge may be a valuable tool in the evaluation of potential vaccine regimes and offers a more physiologically relevant regimen for pathogenic SIVmac239 challenge experiments.

Scientific Publications

Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small molecule CCR5 inhibitor

Kuhmann SE, Pugach P, Kunstman KJ, Taylor J, Stanfield RL, Snyder A, Strizki JM, Riley J, Baroudy BM, Wilson IA, Korber BT, Wolinsky SM, Moore JP

Genetic and phenotypic analyses of human immunodeficiency virus type 1 escape from a small-molecule CCR5 inhibitor. J. Virol. 2004;78(6):2790-807

Abstract

We have described previously the generation of an escape variant of human immunodeficiency virus type 1 (HIV-1), under the selection pressure of AD101, a small molecule inhibitor that binds the CCR5 coreceptor (A. Trkola, S. E. Kuhmann, J. M. Strizki, E. Maxwell, T. Ketas, T. Morgan, P. Pugach, S. X. L. Wojcik, J. Tagat, A. Palani, S. Shapiro, J. W. Clader, S. McCombie, G. R. Reyes, B. M. Baroudy, and J. P. Moore, Proc. Natl. Acad. Sci. USA 99:395-400, 2002). The escape mutant, CC101.19, continued to use CCR5 for entry, but it was at least 20,000-fold more resistant to AD101 than the parental virus, CC1/85. We have now cloned the env genes from the the parental and escape mutant isolates and made chimeric infectious molecular clones that fully recapitulate the phenotypes of the corresponding isolates. Sequence analysis of the evolution of the escape mutants suggested that the most relevant changes were likely to be in the V3 loop of the gp120 glycoprotein. We therefore made a series of mutant viruses and found that full AD101 resistance was conferred by four amino acid changes in V3. Each change individually caused partial resistance when they were introduced into the V3 loop of a CC1/85 clone, but their impact was dependent on the gp120 context in which they were made. We assume that these amino acid changes alter how the HIV-1 Env complex interacts with CCR5. Perhaps unexpectedly, given the complete dependence of the escape mutant on CCR5 for entry, monomeric gp120 proteins expressed from clones of the fully resistant isolate failed to bind to CCR5 on the surface of L1.2-CCR5 cells under conditions where gp120 proteins from the parental virus and a partially AD101-resistant virus bound strongly. Hence, the full impact of the V3 substitutions may only be apparent at the level of the native Env complex.

Scientific Publications

Structural basis of tyrosine sulfation and VH gene usage in antibodies that recognize the HIV type 1 coreceptor binding site on gp120

Huang CC, Venturi M, Majeed S, Moore MJ, Phogat S, Zhang MY, Dimitrov DS, Hendrickson WA, Robinson J, Sodroski J, Wyatt R, Choe H, Farzan M, Kwong PD

Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc. Natl. Acad. Sci. U.S.A. 2004;101(9):2706-11

Abstract

The conserved surface of the HIV-1 gp120 envelope glycoprotein that binds to the HIV-1 coreceptor is protected from humoral recognition by multiple layers of camouflage. Here we present sequence and genomic analyses for 12 antibodies that pierce these defenses and determine the crystal structures of 5. The data reveal mechanisms and atomic-level details for three unusual immune features: posttranslational mimicry of coreceptor by tyrosine sulfation of antibody, an alternative molecular mechanism controlling such sulfation, and highly selective V(H)-gene usage. When confronted by extraordinary viral defenses, the immune system unveils novel adaptive capabilities, with tyrosine sulfation enhancing the vocabulary of antigen recognition.

Scientific Publications

Reversion of CTL escape variant immunodeficiency viruses in vivo

Friedrich TC, Dodds EJ, Yant LJ, Vojnov L, Rudersdorf R, Cullen C, Evans DT, Desrosiers RC, Mothé BR, Sidney J, Sette A, Kunstman K, Wolinsky S, Piatak M, Lifson J, Hughes AL, Wilson N, O'Connor DH, Watkins DI

Reversion of CTL escape-variant immunodeficiency viruses in vivo. Nat. Med. 2004;10(3):275-81

Abstract

Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.