Filter by
-
Type
Scientific Publications
Vaccine protection from CD4 T cell loss caused by simian immunodeficiency virus SIV mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens
Koopman G, Mortier D, Hofman S, Niphuis H, Fagrouch Z, Norley S, Sutter G, Liljeström P, Heeney JL
Vaccine protection from CD4+ T-cell loss caused by simian immunodeficiency virus (SIV) mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens. J. Gen. Virol. 2004;85(Pt 10):2915-24
Abstract
Candidate human immunodeficiency virus (HIV) vaccine strategies that induce strong cellular immune responses protect rhesus macaques that are infected with recombinant simian/human immunodeficiency virus SHIV89.6p from acute CD4+ T-cell loss and delay progression to AIDS. However, similar strategies have not proven as efficacious in the simian immunodeficiency virus (SIV)mac model of AIDS, an infection that causes a slow, steady loss of CD4+ T-cell function and numbers in rhesus macaques similar to that caused by HIV-1, the principal cause of AIDS in humans. Efforts to increase vaccine efficacy by repeated boosting with the same vector are quickly limited by rising anti-vector immune responses. Here, the sequential use of three different vectors (DNA, Semliki Forest virus and modified vaccinia virus Ankara) encoding the same SIVmac structural and regulatory antigens was investigated and demonstrated to prevent or slow the loss of CD4+ T-cells after mucosal challenge with the highly pathogenic SIVmac251 strain. Of particular interest was an inverse association between the extent of T-helper 2 cytokine responses and steady-state virus load. Although limited in the number of animals, this study provides important proof of the efficacy of the triple-vector vaccine strategy against chronic, progressive CD4+ T-cell loss in the rigorous SIVmac/rhesus macaque model of AIDS.
Scientific Publications
Heterologous human immunodeficiency virus type 1 priming boosting immunization strategies involving replication defective adenovirus and poxvirus vaccine vectors
Casimiro DR, Bett AJ, Fu TM, Davies ME, Tang A, Wilson KA, Chen M, Long R, McKelvey T, Chastain M, Gurunathan S, Tartaglia J, Emini EA, Shiver J
Heterologous human immunodeficiency virus type 1 priming-boosting immunization strategies involving replication-defective adenovirus and poxvirus vaccine vectors. J. Virol. 2004;78(20):11434-8
Abstract
We compared the human immunodeficiency virus type 1 (HIV-1)-specific cellular immune responses elicited in nonhuman primates by HIV-1 gag-expressing replication-defective adenovirus serotype 5 (Ad5) or poxvirus vectors, used either alone or in combination with each other. The responses arising from a heterologous Ad5 priming-poxvirus boosting regimen were significantly greater than those elicited by homologous regimens with the individual vectors or by a heterologous poxvirus priming-Ad5 boosting regimen. The heterologous Ad5 priming-poxvirus boosting approach may have potential utility in humans as a means of inducing high levels of cellular immunity.
Scientific Publications
Consequences of cytotoxic T lymphocyte escape common escape mutations in simian immunodeficiency virus are poorly recognized in naive hosts
Friedrich TC, McDermott AB, Reynolds MR, Piaskowski S, Fuenger S, De Souza IP, Rudersdorf R, Cullen C, Yant LJ, Vojnov L, Stephany J, Martin S, O'Connor DH, Wilson N, Watkins DI
Consequences of cytotoxic T-lymphocyte escape: common escape mutations in simian immunodeficiency virus are poorly recognized in naive hosts. J. Virol. 2004;78(18):10064-73
Abstract
Cytotoxic T lymphocytes (CTL) are associated with control of immunodeficiency virus infection but also select for variants that escape immune recognition. Declining frequencies of epitope-specific CTL frequencies have been correlated with viral escape in individual hosts. However, escape mutations may give rise to new epitopes that could be recognized by CTL expressing appropriate T-cell receptors and thus still be immunogenic when escape variants are passed to individuals expressing the appropriate major histocompatibility complex class I molecules. To determine whether peptide ligands that have been altered through escape can be immunogenic in new hosts, we challenged naïve, immunocompetent macaques with a molecularly cloned simian immunodeficiency virus (SIV) bearing common escape mutations in three immunodominant CTL epitopes. Responses to the altered peptides were barely detectable in fresh samples at any time after infection. Surprisingly, CTL specific for two of three escaped epitopes could be expanded by in vitro stimulation with synthetic peptides. Our results suggest that some escape variant epitopes evolving in infected individuals do not efficiently stimulate new populations of CTL, either in that individual or upon passage to new hosts. Nevertheless, escape variation may not completely abolish an epitope's immunogenicity. Moreover, since the mutant epitope sequences did not revert to wild type during the study period, it is possible that low-frequency CTL exerted enough selective pressure to preserve epitope mutations in viruses replicating in vivo.
Scientific Publications
Viral entry denied
Doms RW
Viral entry denied. N. Engl. J. Med. 2004;351(8):743-4
doi: 10.1056/nejmp048058
Scientific Publications
TRIM5alpha mediates the postentry block to N tropic murine leukemia viruses in human cells
Perron MJ, Stremlau M, Song B, Ulm W, Mulligan RC, Sodroski J
TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc. Natl. Acad. Sci. U.S.A. 2004;101(32):11827-32
Abstract
Murine leukemia viruses (MLVs) have been classified as N-tropic (N-MLV) or B-tropic (B-MLV), depending on their ability to infect particular mouse strains. The early phase of N-MLV infection is blocked in the cells of several mammalian species, including humans. This block is mediated by a dominant host factor that targets the viral capsid soon after virus entry into the cell has been achieved. A similar block to HIV-1 in rhesus monkey cells is mediated by TRIM5alpha. Here we show that human TRIM5alpha is both necessary and sufficient for the restriction of N-MLV in human cells. Rhesus monkey TRIM5alpha, which potently blocks HIV-1 infection, exhibited only modest inhibition of N-MLV infection. B-MLV was resistant to the antiviral effects of both human and rhesus monkey TRIM5alpha; susceptibility to TRIM5alpha-mediated restriction was conferred by alteration of residue 110 of the B-MLV capsid protein to the amino acid found in the N-MLV capsid. Our results demonstrate that species-specific variation in TRIM5alpha governs its ability to block infection by diverse retroviruses.
Scientific Publications
A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV 1 integrase
Hazuda DJ, Anthony NJ, Gomez RP, Jolly SM, Wai JS, Zhuang L, Fisher TE, Embrey M, Guare JP, Egbertson MS, Vacca JP, Huff JR, Felock PJ, Witmer MV, Stillmock KA, Danovich R, Grobler J, Miller MD, Espeseth AS, Jin L, Chen IW, Lin JH, Kassahun K, Ellis JD, Wong BK, Xu W, Pearson PG, Schleif WA, Cortese R, Emini E, Summa V, Holloway MK, Young SD
A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc. Natl. Acad. Sci. U.S.A. 2004;101(31):11233-8
Abstract
The increasing incidence of resistance to current HIV-1 therapy underscores the need to develop antiretroviral agents with new mechanisms of action. Integrase, one of three viral enzymes essential for HIV-1 replication, presents an important yet unexploited opportunity for drug development. We describe here the identification and characterization of L-870,810, a small-molecule inhibitor of HIV-1 integrase with potent antiviral activity in cell culture and good pharmacokinetic properties. L-870,810 is an inhibitor with an 8-hydroxy-(1,6)-naphthyridine-7-carboxamide pharmacophore. The compound inhibits HIV-1 integrase-mediated strand transfer, and its antiviral activity in vitro is a direct consequence of this ascribed effect on integration. L-870,810 is mechanistically identical to previously described inhibitors from the diketo acid series; however, viruses selected for resistance to L-870,810 contain mutations (integrase residues 72, 121, and 125) that uniquely confer resistance to the naphthyridine. Conversely, mutations associated with resistance to the diketo acid do not engender naphthyridine resistance. Importantly, the mutations associated with resistance to each of these inhibitors map to distinct regions within the integrase active site. Therefore, we propose a model of the two inhibitors that is consistent with this observation and suggests specific interactions with discrete binding sites for each ligand. These studies provide a structural basis and rationale for developing integrase inhibitors with the potential for unique and nonoverlapping resistance profiles.
Scientific Publications
Vaccine development to prevent cytomegalovirus disease report from the National Vaccine Advisory Committee
Arvin AM, Fast P, Myers M, Plotkin S, Rabinovich R
Vaccine development to prevent cytomegalovirus disease: report from the National Vaccine Advisory Committee. Clin. Infect. Dis. 2004;39(2):233-9
doi: 10.1086/421999
Abstract
Cytomegalovirus (CMV) infection is the most common intrauterine infection in the United States, and it exacts a heavy toll when it infects children and immunocompromised individuals. A CMV vaccine was assigned the highest priority by the Institute of Medicine in its 1999 assessment of targets for vaccine development. The priority was based on the cost and human suffering that would be alleviated by reducing the disease burden of congenital CMV infection. The National Vaccine Advisory Committee and invited experts examined the prospects for a CMV vaccine and the actions needed to bring about successful vaccine development at a National Vaccine Program Office workshop in October 2000. This article summarizes information about the changing epidemiology of CMV and immune responses to infection and immunity, and it reviews the current status of several vaccine candidates. Support of government agencies for CMV vaccine research and development is critical to address this need.
Scientific Publications
Engineering RENTA a DNA prime MVA boost HIV vaccine tailored for Eastern and Central Africa
Nkolola JP, Wee EG, Im EJ, Jewell CP, Chen N, Xu XN, McMichael AJ, Hanke T
Engineering RENTA, a DNA prime-MVA boost HIV vaccine tailored for Eastern and Central Africa. Gene Ther. 2004;11(13):1068-80
Abstract
For the development of human immunodeficiency virus type 1 (HIV-1) vaccines, traditional approaches inducing virus-neutralizing antibodies have so far failed. Thus the effort is now focused on elicitation of cellular immunity. We are currently testing in clinical trials in the United Kingdom and East Africa a T-cell vaccine consisting of HIV-1 clade A Gag-derived immunogen HIVA delivered in a prime-boost regimen by a DNA plasmid and modified vaccinia virus Ankara (MVA). Here, we describe engineering and preclinical development of a second immunogen RENTA, which will be used in combination with the present vaccine in a four-component DNA/HIVA-RENTA prime-MVA/HIVA-RENTA boost formulation. RENTA is a fusion protein derived from consensus HIV clade A sequences of Tat, reverse transcriptase, Nef and gp41. We inactivated the natural biological activities of the HIV components and confirmed immunogenicities of the pTHr.RENTA and MVA.RENTA vaccines in mice. Furthermore, we demonstrated in mice and rhesus monkeys broadening of HIVA-elicited T-cell responses by a parallel induction of HIVA- and RENTA-specific responses recognizing multiple HIV epitopes.
Scientific Publications
AIDS HIV Developing an AIDS vaccine need uncertainty hope
Emini EA, Koff WC
AIDS/HIV. Developing an AIDS vaccine: need, uncertainty, hope. Science 2004;304(5679):1913-4
Scientific Publications
N linked glycosylation in the CXCR4 N terminus inhibits binding to HIV 1 envelope glycoproteins
Wang J, Babcock GJ, Choe H, Farzan M, Sodroski J, Gabuzda D
N-linked glycosylation in the CXCR4 N-terminus inhibits binding to HIV-1 envelope glycoproteins. Virology 2004;324(1):140-50
Abstract
CXCR4 is a co-receptor along with CD4 for human immunodeficiency virus type 1 (HIV-1). We investigated the role of N-linked glycosylation in the N-terminus of CXCR4 in binding to HIV-1 gp120 envelope glycoproteins. Gp120s from CXCR4 (X4) and CCR5 (R5) using HIV-1 strains bound more efficiently to non-N-glycosylated than to N-glycosylated CXCR4 proteoliposomes in a CD4-dependent manner. Similar results were observed in binding studies using non-N-glycosylated or N-glycosylated CXCR4 expressed on cells. Mutation of the N-glycosylation site N11 in CXCR4 (N11Q-CXCR4) enhanced CD4-dependent binding of X4 and R5 gp120s and allowed more efficient entry of viruses pseudotyped with X4 or R5 HIV-1 envelope glycoproteins. However, the binding of R5 gp120 to N11Q-CXCR4 and entry of R5 HIV-1 viruses into cells expressing N11Q-CXCR4 were 20- and 100- to 1000-fold less efficient, respectively, than the levels achieved using X4 gp120 or X4 HIV-1 viruses. Binding of stromal cell-derived factor (SDF)-1alpha, the natural ligand of CXCR4, and SDF-1alpha-induced signaling were reduced by the N11Q mutation. These findings demonstrate that N-glycosylation at N11 inhibits the binding of CXCR4 to X4 and R5 HIV-1 gp120, and provide a better understanding of the structural elements of CXCR4 involved in HIV-1 Env-co-receptor interactions.
Scientific Publications
Passive immunotherapy in simian immunodeficiency virus infected macaques accelerates the development of neutralizing antibodies
Haigwood NL, Montefiori DC, Sutton WF, McClure J, Watson AJ, Voss G, Hirsch VM, Richardson BA, Letvin NL, Hu SL, Johnson PR
Passive immunotherapy in simian immunodeficiency virus-infected macaques accelerates the development of neutralizing antibodies. J. Virol. 2004;78(11):5983-95
Abstract
Passively transferred neutralizing antibodies can block lentivirus infection, but their role in postexposure prophylaxis is poorly understood. In this nonhuman-primate study, the effects of short-term antibody therapy on 5-year disease progression, virus load, and host immunity were explored. We reported previously that postinfection passive treatment with polyclonal immune globulin with high neutralizing titers against SIVsmE660 (SIVIG) significantly improved the 67-week health of SIVsmE660-infected Macaca mulatta macaques. Four of six treated macaques maintained low or undetectable levels of virus in plasma, compared with one of ten controls, while two rapid progressors controlled viremia only as long as the SIVIG was present. SIVIG treatment delayed the de novo production of envelope (Env)-specific antibodies by 8 weeks (13). We show here that differences in disease progression were also significant at 5 years postinfection, excluding rapid progressors (P = 0.05). Macaques that maintained =10(3) virus particles per ml of plasma and =30 infectious virus particles per 10(6) mononuclear cells from peripheral blood and lymph nodes had delayed disease onset. All macaques that survived beyond 18 months had measurable Gag-specific CD8(+) cytotoxic T cells, regardless of treatment. Humoral immunity in survivors beyond 20 weeks was strikingly different in the SIVIG and control groups. Despite a delay in Env-specific binding antibodies, de novo production of neutralizing antibodies was significantly accelerated in SIVIG-treated macaques. Titers of de novo neutralizing antibodies at week 12 were comparable to levels achieved in controls only by week 32 or later. Acceleration of de novo simian immunodeficiency virus immunity in the presence of passively transferred neutralizing antibodies is a novel finding with implications for postexposure prophylaxis and vaccines.
Scientific Publications
DNA vaccines against human immunodeficiency virus type 1
Estcourt MJ, McMichael AJ, Hanke T
DNA vaccines against human immunodeficiency virus type 1. Immunol. Rev. 2004;199:144-55
Abstract
Development of a vaccine against human immunodeficiency virus type 1 (HIV-1) is the main hope for controlling the acquired immunodeficiency syndrome pandemic. An ideal HIV vaccine should induce neutralizing antibodies, CD4+ helper T cells, and CD8+ cytotoxic T cells. While the induction of broadly neutralizing antibodies remains a highly challenging goal, there are a number of technologies capable of inducing potent cell-mediated responses in animal models, which are now starting to be tested in humans. Naked DNA immunization is one of them. This review focuses on the stimulation of HIV-specific T cells and discusses in the context of the current 'state-of-art' of DNA vaccines, the areas where this technology might assist either alone or as a part of more complex vaccine formulations in the HIV vaccine development.
Scientific Publications
Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid
Owens CM, Song B, Perron MJ, Yang PC, Stremlau M, Sodroski J
Binding and susceptibility to postentry restriction factors in monkey cells are specified by distinct regions of the human immunodeficiency virus type 1 capsid. J. Virol. 2004;78(10):5423-37
Abstract
In cells of Old World and some New World monkeys, dominant factors restrict human immunodeficiency virus type 1 (HIV-1) infections after virus entry. The simian immunodeficiency virus SIV(mac) is less susceptible to these restrictions, a property that is determined largely by the viral capsid protein. For this study, we altered exposed amino acid residues on the surface of the HIV-1 capsid, changing them to the corresponding residues found on the SIV(mac) capsid. We identified two distinct pathways of escape from early, postentry restriction in monkey cells. One set of mutants that were altered near the base of the cyclophilin A-binding loop of the N-terminal capsid domain or in the interdomain linker exhibited a decreased ability to bind the restricting factor(s). Consistent with the location of this putative factor-binding site, cyclophilin A and the restricting factor(s) cooperated to achieve the postentry block. A second set of mutants that were altered in the ridge formed by helices 3 and 6 of the N-terminal capsid domain efficiently bound the restricting factor(s) but were resistant to the consequences of factor binding. These results imply that binding of the simian restricting factor(s) is not sufficient to mediate the postentry block to HIV-1 and that SIV(mac) capsids escape the block by decreases in both factor binding and susceptibility to the effects of the factor(s).