Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

Human immunodeficiency virus type 1 elite neutralizers individuals with broad and potent neutralizing activity identified by using a high throughput neutralization assay together with an analytical selection algorithm

Simek MD, Rida W, Priddy FH, Pung P, Carrow E, Laufer DS, Lehrman JK, Boaz M, Tarragona-Fiol T, Miiro G, Birungi J, Pozniak A, McPhee DA, Manigart O, Karita E, Inwoley A, Jaoko W, Dehovitz J, Bekker LG, Pitisuttithum P, Paris R, Walker LM, Poignard P, Wrin T, Fast PE, Burton DR, Koff WC

Human immunodeficiency virus type 1 elite neutralizers: individuals with broad and potent neutralizing activity identified by using a high-throughput neutralization assay together with an analytical selection algorithm. J. Virol. 2009;83(14):7337-48 doi: 10.1128/JVI.00110-09

Abstract

The development of a rapid and efficient system to identify human immunodeficiency virus type 1 (HIV-1)-infected individuals with broad and potent HIV-1-specific neutralizing antibody responses is an important step toward the discovery of critical neutralization targets for rational AIDS vaccine design. In this study, samples from HIV-1-infected volunteers from diverse epidemiological regions were screened for neutralization responses using pseudovirus panels composed of clades A, B, C, and D and circulating recombinant forms (CRFs). Initially, 463 serum and plasma samples from Australia, Rwanda, Uganda, the United Kingdom, and Zambia were screened to explore neutralization patterns and selection ranking algorithms. Samples were identified that neutralized representative isolates from at least four clade/CRF groups with titers above prespecified thresholds and ranked based on a weighted average of their log-transformed neutralization titers. Linear regression methods selected a five-pseudovirus subset, representing clades A, B, and C and one CRF01_AE, that could identify top-ranking samples with 50% inhibitory concentration (IC(50)) neutralization titers of >or=100 to multiple isolates within at least four clade groups. This reduced panel was then used to screen 1,234 new samples from the Ivory Coast, Kenya, South Africa, Thailand, and the United States, and 1% were identified as elite neutralizers. Elite activity is defined as the ability to neutralize, on average, more than one pseudovirus at an IC(50) titer of 300 within a clade group and across at least four clade groups. These elite neutralizers provide promising starting material for the isolation of broadly neutralizing monoclonal antibodies to assist in HIV-1 vaccine design.

Scientific Publications

An African perspective on mucosal immunity and HIV 1

Pala P, Gomez-Roman VR, Gilmour J, Kaleebu P

An African perspective on mucosal immunity and HIV-1. Mucosal Immunol 2009;2(4):300-14 doi: 10.1038/mi.2009.23

Abstract

HIV prevention mandates an understanding of the mechanisms of mucosal immunity with attention to some unique features of the epidemic and mucosal environment in the developing world. An effective vaccine will have to induce mucosal protection against a highly diverse virus, which is equipped with a number of immune evasion strategies. Its development will require assessment of mucosal immune responses, and it will have to protect a mucosal environment where inflammation and altered immune responses are common because of the presence of other mucosal infections, such as sexually transmitted infections and parasites, and where nutritional status may also be compromised. Ideally, not only prevention methods would protect adults but also provide cover against gastrointestinal transmission through maternal milk. Prevention might also be complemented by microbicides and circumcision, two alternative approaches to mucosal protection. It seems unlikely that a single solution will work in all instances and intervention might have to act at multiple levels and be tailored to local circumstances. We review here some of the mucosal events associated with HIV infection that are most relevant in an African setting.

Scientific Publications

Genetic identity biological phenotype and evolutionary pathways of transmitted founder viruses in acute and early HIV 1 infection

Salazar-Gonzalez JF, Salazar MG, Keele BF, Learn GH, Giorgi EE, Li H, Decker JM, Wang S, Baalwa J, Kraus MH, Parrish NF, Shaw KS, Guffey MB, Bar KJ, Davis KL, Ochsenbauer-Jambor C, Kappes JC, Saag MS, Cohen MS, Mulenga J, Derdeyn CA, Allen S, Hunter E, Markowitz M, Hraber P, Perelson AS, Bhattacharya T, Haynes BF, Korber BT, Hahn BH, Shaw GM

Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J. Exp. Med. 2009;206(6):1273-89 doi: 10.1084/jem.20090378

Abstract

Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4(+) T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12-20 mo, viruses exhibited concentrated mutations at 17-34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses.

Scientific Publications

Efficient recovery of high affinity antibodies from a single chain Fab yeast display library

Walker LM, Bowley DR, Burton DR

Efficient recovery of high-affinity antibodies from a single-chain Fab yeast display library. J. Mol. Biol. 2009;389(2):365-75 doi: 10.1016/j.jmb.2009.04.019

Abstract

Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.

Scientific Publications

HIV 1 and influenza antibodies seeing antigens in new ways

Kwong PD, Wilson IA

HIV-1 and influenza antibodies: seeing antigens in new ways. Nat. Immunol. 2009;10(6):573-8 doi: 10.1038/ni.1746

Abstract

New modes of humoral recognition have been identified by studies of antibodies that neutralize human immunodeficiency virus type 1 and influenza A viruses. Understanding how such modes of antibody-antigen recognition can occur in the context of sophisticated mechanisms of humoral evasion has implications for the development of effective vaccines. Here we describe eight modes of antibody recognition first observed with human immunodeficiency virus type 1. Similarities to four of these modes have been identified with antibodies to a conserved 'stem' epitope on influenza A viruses. We outline how each of these different modes of antibody recognition is particularly suited to overcoming a specific viral evasion tactic and assess potential routes of re-elicitation in vaccine settings.

Scientific Publications

Evaluation and recommendations on good clinical laboratory practice guidelines for phase I III clinical trials

Sarzotti-Kelsoe M, Cox J, Cleland N, Denny T, Hural J, Needham L, Ozaki D, Rodriguez-Chavez IR, Stevens G, Stiles T, Tarragona-Fiol T, Simkins A

Evaluation and recommendations on good clinical laboratory practice guidelines for phase I-III clinical trials. PLoS Med. 2009;6(5):e1000067 doi: 10.1371/journal.pmed.1000067

Scientific Publications

Broadly neutralizing human anti HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers

Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN, Koff WC, Watkins DI, Burton DR

Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog. 2009;5(5):e1000433 doi: 10.1371/journal.ppat.1000433

Abstract

Developing an immunogen that elicits broadly neutralizing antibodies (bNAbs) is an elusive but important goal of HIV vaccine research, especially after the recent failure of the leading T cell based HIV vaccine in human efficacy trials. Even if such an immunogen can be developed, most animal model studies indicate that high serum neutralizing concentrations of bNAbs are required to provide significant benefit in typical protection experiments. One possible exception is provided by the anti-glycan bNAb 2G12, which has been reported to protect macaques against CXCR4-using SHIV challenge at relatively low serum neutralizing titers. Here, we investigated the ability of 2G12 administered intravenously (i.v.) to protect against vaginal challenge of rhesus macaques with the CCR5-using SHIV(SF162P3). The results show that, at 2G12 serum neutralizing titers of the order of 1:1 (IC(90)), 3/5 antibody-treated animals were protected with sterilizing immunity, i.e. no detectable virus replication following challenge; one animal showed a delayed and lowered primary viremia and the other animal showed a course of infection similar to 4 control animals. This result contrasts strongly with the typically high titers observed for protection by other neutralizing antibodies, including the bNAb b12. We compared b12 and 2G12 for characteristics that might explain the differences in protective ability relative to neutralizing activity. We found no evidence to suggest that 2G12 transudation to the vaginal surface was significantly superior to b12. We also observed that the ability of 2G12 to inhibit virus replication in target cells through antibody-mediated effector cell activity in vitro was equivalent or inferior to b12. The results raise the possibility that some epitopes on HIV may be better vaccine targets than others and support targeting the glycan shield of the envelope.

Scientific Publications

Chemical modification of proteins at cysteine opportunities in chemistry and biology

Chalker JM, Bernardes GJ, Lin YA, Davis BG

Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem Asian J 2009;4(5):630-40 doi: 10.1002/asia.200800427

Abstract

Chemical modification of proteins is a rapidly expanding area in chemical biology. Selective installation of biochemical probes has led to a better understanding of natural protein modification and macromolecular function. In other cases such chemical alterations have changed the protein function entirely. Additionally, tethering therapeutic cargo to proteins has proven invaluable in campaigns against disease. For controlled, selective access to such modified proteins, a unique chemical handle is required. Cysteine, with its unique reactivity, has long been used for such modifications. Cysteine has enjoyed widespread use in selective protein modification, yet new applications and even new reactions continue to emerge. This Focus Review highlights the enduring utility of cysteine in protein modification with special focus on recent innovations in chemistry and biology associated with such modifications.

Scientific Publications

A yeast glycoprotein shows high affinity binding to the broadly neutralizing human immunodeficiency virus antibody 2G12 and inhibits gp120 interactions with 2G12 and DC SIGN

Luallen RJ, Fu H, Agrawal-Gamse C, Mboudjeka I, Huang W, Lee FH, Wang LX, Doms RW, Geng Y

A yeast glycoprotein shows high-affinity binding to the broadly neutralizing human immunodeficiency virus antibody 2G12 and inhibits gp120 interactions with 2G12 and DC-SIGN. J. Virol. 2009;83(10):4861-70 doi: 10.1128/JVI.02537-08

Abstract

The human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein contains numerous N-linked carbohydrates that shield conserved peptide epitopes and promote trans infection by dendritic cells via binding to cell surface lectins. The potent and broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose-type oligosaccharides on the gp120 subunit of Env, revealing a conserved and highly exposed epitope on the glycan shield. To find an effective antigen for eliciting 2G12-like antibodies, we searched for endogenous yeast proteins that could bind to 2G12 in a panel of Saccharomyces cerevisiae glycosylation knockouts and discovered one protein that bound weakly in a Delta pmr1 strain deficient in hyperglycosylation. 2G12 binding to this protein, identified as Pst1, was enhanced by adding the Delta mnn1 deletion to the Delta pmr1 background, ensuring the exposure of terminal alpha1,2-linked mannose residues on the D1 and D3 arms of high-mannose glycans. However, optimum 2G12 antigenicity was found when Pst1, a heavily N-glycosylated protein, was expressed with homogenous Man(8)GlcNAc(2) structures in Delta och1 Delta mnn1 Delta mnn4 yeast. Surface plasmon resonance analysis of this form of Pst1 showed high affinity for 2G12, which translated into Pst1 efficiently inhibiting gp120 interactions with 2G12 and DC-SIGN and blocking 2G12-mediated neutralization of HIV-1 pseudoviruses. The high affinity of the yeast glycoprotein Pst1 for 2G12 highlights its potential as a novel antigen to induce 2G12-like antibodies.

Scientific Publications

Structure based stabilization of HIV 1 gp120 enhances humoral immune responses to the induced co receptor binding site

Dey B, Svehla K, Xu L, Wycuff D, Zhou T, Voss G, Phogat A, Chakrabarti BK, Li Y, Shaw G, Kwong PD, Nabel GJ, Mascola JR, Wyatt RT

Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site. PLoS Pathog. 2009;5(5):e1000445 doi: 10.1371/journal.ppat.1000445

Abstract

The human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein, gp120, possesses conserved binding sites for interaction with the primary virus receptor, CD4, and also for the co-receptor, generally CCR5. Although gp120 is a major target for virus-specific neutralizing antibodies, the gp120 variable elements and its malleable nature contribute to evasion of effective host-neutralizing antibodies. To understand the conformational character and immunogenicity of the gp120 receptor binding sites as potential vaccine targets, we introduced structure-based modifications to stabilize gp120 core proteins (deleted of the gp120 major variable regions) into the conformation recognized by both receptors. Thermodynamic analysis of the re-engineered core with selected ligands revealed significant stabilization of the receptor-binding regions. Stabilization of the co-receptor-binding region was associated with a marked increase in on-rate of ligand binding to this site as determined by surface plasmon resonance. Rabbit immunization studies showed that the conformational stabilization of core proteins, along with increased ligand affinity, was associated with strikingly enhanced humoral immune responses against the co-receptor-binding site. These results demonstrate that structure-based approaches can be exploited to stabilize a conformational site in a large functional protein to enhance immunogenic responses specific for that region.

Scientific Publications

Broad neutralization of human immunodeficiency virus type 1 HIV 1 elicited from human rhinoviruses that display the HIV 1 gp41 ELDKWA epitope

Arnold GF, Velasco PK, Holmes AK, Wrin T, Geisler SC, Phung P, Tian Y, Resnick DA, Ma X, Mariano TM, Petropoulos CJ, Taylor JW, Katinger H, Arnold E

Broad neutralization of human immunodeficiency virus type 1 (HIV-1) elicited from human rhinoviruses that display the HIV-1 gp41 ELDKWA epitope. J. Virol. 2009;83(10):5087-100 doi: 10.1128/JVI.00184-09

Abstract

In efforts to develop AIDS vaccine components, we generated combinatorial libraries of recombinant human rhinoviruses that display the well-conserved ELDKWA epitope of the membrane-proximal external region of human immunodeficiency virus type 1 (HIV-1) gp41. The broadly neutralizing human monoclonal antibody 2F5 was used to select for viruses whose ELDKWA conformations resemble those of HIV. Immunization of guinea pigs with different chimeras, some boosted with ELDKWA-based peptides, elicited antibodies capable of neutralizing HIV-1 pseudoviruses of diverse subtypes and coreceptor usages. These recombinant immunogens are the first reported that elicit broad, albeit modest, neutralization of HIV-1 using an ELDKWA-based epitope and are among the few reported that elicit broad neutralization directed against any recombinant HIV epitope, providing a critical advance in developing effective AIDS vaccine components.

Scientific Publications

A method for identification of HIV gp140 binding memory B cells in human blood

Scheid JF, Mouquet H, Feldhahn N, Walker BD, Pereyra F, Cutrell E, Seaman MS, Mascola JR, Wyatt RT, Wardemann H, Nussenzweig MC

A method for identification of HIV gp140 binding memory B cells in human blood. J. Immunol. Methods 2009;343(2):65-7 doi: 10.1016/j.jim.2008.11.012

Abstract

Antibodies to HIV are potentially important reagents for basic and clinical studies. Historically, these reagents have been produced by random cloning of heavy and light chains in phage display libraries [Burton, D.R., Barbas, C.F. III, Persson, M.A.A., Koenig, S., Chanock, R.M., and Lerner, R.A., (1991), A large array of human monoclonal antibodies to type 1 immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. U. S. A. 88, 10134-10137.] and electrofusion techniques [Buchacher, A., Predl, R., Tauer, C., Purtscher, M., Gruber, G., Heider, R., Steindl, F., Trkola, A., Jungbauer, A., and Katinger, H., (1992), Human monoclonal antibodies against gp41 and gp120 as potential agent for passive immunization. Vaccines 92, 191-195]. Here we describe a method to identify and potentially enrich human memory B cells from HIV infected patients that show serum titers of neutralizing antibodies. When biotinylated gp140 is used to stain peripheral blood mononuclear cells it identifies a distinct population of gp140 binding B cells by flow cytometry.

Scientific Publications

Evolution of HLA B 5703 HIV 1 escape mutations in HLA B 5703 positive individuals and their transmission recipients

Crawford H, Lumm W, Leslie A, Schaefer M, Boeras D, Prado JG, Tang J, Farmer P, Ndung'u T, Lakhi S, Gilmour J, Goepfert P, Walker BD, Kaslow R, Mulenga J, Allen S, Goulder PJ, Hunter E

Evolution of HLA-B*5703 HIV-1 escape mutations in HLA-B*5703-positive individuals and their transmission recipients. J. Exp. Med. 2009;206(4):909-21 doi: 10.1084/jem.20081984

Abstract

HLA-B*57 is the class I allele most consistently associated with control of human immunodeficiency virus (HIV) replication, which may be linked to the specific HIV peptides that this allele presents to cytotoxic T lymphocytes (CTLs), and the resulting efficacy of these cellular immune responses. In two HIV C clade-infected populations in South Africa and Zambia, we sought to elucidate the role of HLA-B*5703 in HIV disease outcome. HLA-B*5703-restricted CTL responses select for escape mutations in three Gag p24 epitopes, in a predictable order. We show that the accumulation of these mutations sequentially reduces viral replicative capacity in vitro. Despite this, in vivo data demonstrate that there is ultimately an increase in viral load concomitant with evasion of all three HLA-B*5703-restricted CTL responses. In HLA-B*5703-mismatched recipients, the previously described early benefit of transmitted HLA-B*5703-associated escape mutations is abrogated by the increase in viral load coincident with reversion. Rapid disease progression is observed in HLA-matched recipients to whom mutated virus is transmitted. These data demonstrate that, although costly escape from CTL responses can progressively attenuate the virus, high viral loads develop in the absence of adequate, continued CTL responses. These data underline the need for a CTL vaccine against multiple conserved epitopes.