Scientific Publications

Filter by

  • Health area

  • Locations

  • Topic

  • Year

  • Journal

  • Clear all

Scientific Publications

The renaissance in HIV vaccine development future directions

Wayne CK, Berkley SF

The renaissance in HIV vaccine development–future directions. N. Engl. J. Med. 2010;363(5):e7 doi: 10.1056/NEJMp1007629

Scientific Publications

Polysaccharide mimicry of the epitope of the broadly neutralizing anti HIV antibody 2G12 induces enhanced antibody responses to self oligomannose glycans

Dunlop DC, Bonomelli C, Mansab F, Vasiljevic S, Doores KJ, Wormald MR, Palma AS, Feizi T, Harvey DJ, Dwek RA, Crispin M, Scanlan CN

Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans. Glycobiology 2010;20(7):812-23 doi: 10.1093/glycob/cwq020

Abstract

Immunologically, 'self' carbohydrates protect the HIV-1 surface glycoprotein, gp120, from antibody recognition. However, one broadly neutralizing antibody, 2G12, neutralizes primary viral isolates by direct recognition of Manalpha1-->2Man motifs formed by the host-derived oligomannose glycans of the viral envelope. Immunogens, capable of eliciting antibodies of similar specificity to 2G12, are therefore candidates for HIV/AIDS vaccine development. In this context, it is known that the yeast mannan polysaccharides exhibit significant antigenic mimicry with the glycans of HIV-1. Here, we report that modulation of yeast polysaccharide biosynthesis directly controls the molecular specificity of cross-reactive antibodies to self oligomannose glycans. Saccharomyces cerevisiae mannans are typically terminated by alpha1-->3-linked mannoses that cap a Manalpha1-->2Man motif that otherwise closely resembles the part of the oligomannose epitope recognized by 2G12. Immunization with S. cerevisiae deficient for the alpha1-->3 mannosyltransferase gene (DeltaMnn1), but not with wild-type S. cerevisiae, reproducibly elicited antibodies to the self oligomannose glycans. Carbohydrate microarray analysis of DeltaMnn1 immune sera revealed fine carbohydrate specificity to Manalpha1-->2Man units, closely matching that of 2G12. These specificities were further corroborated by enzyme-linked immunosorbent assay with chemically defined glycoforms of gp120. These antibodies exhibited remarkable similarity in the carbohydrate specificity to 2G12 and displayed statistically significant, albeit extremely weak, neutralization of HIV-1 compared to control immune sera. These data confirm the Manalpha1-->2Man motif as the primary carbohydrate neutralization determinant of HIV-1 and show that the genetic modulation of microbial polysaccharides is a route towards immunogens capable of eliciting antibody responses to the glycans of HIV-1.

Scientific Publications

Replicating viral vectors as HIV vaccines summary report from the IAVI sponsored satellite symposium at the AIDS vaccine 2009 conference

Excler JL, Parks CL, Ackland J, Rees H, Gust ID, Koff WC

Replicating viral vectors as HIV vaccines: summary report from the IAVI-sponsored satellite symposium at the AIDS vaccine 2009 conference. Biologicals 2010;38(4):511-21 doi: 10.1016/j.biologicals.2010.03.005

Abstract

In October 2009, The International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Replicating Viral Vectors for use in AIDS Vaccines' at the AIDS Vaccine 2009 Conference in Paris. The purpose of the symposium was to gather together researchers, representatives from regulatory agencies, and vaccine developers to discuss issues related to advancement of replication-competent viral vector- based HIV vaccines into clinical trials. The meeting introduced the rationale for accelerating the development of replicating viral vectors for use as AIDS vaccines. It noted that the EMEA recently published draft guidelines that are an important first step in providing guidance for advancing live viral vectors into clinical development. Presentations included case studies and development challenges for viral vector-based vaccine candidates. These product development challenges included cell substrates used for vaccine manufacturing, the testing needed to assess vaccine safety, conducting clinical trials with live vectors, and assessment of vaccination risk versus benefit. More in depth discussion of risk and benefit highlighted the fact that AIDS vaccine efficacy trials must be conducted in the developing world where HIV incidence is greatest and how inequities in global health dramatically influence the political and social environment in developing countries.

Scientific Publications

Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV 1

Pejchal R, Walker LM, Stanfield RL, Phogat SK, Koff WC, Poignard P, Burton DR, Wilson IA

Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proc. Natl. Acad. Sci. U.S.A. 2010;107(25):11483-8 doi: 10.1073/pnas.1004600107

Abstract

Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize approximately 80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 A resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue 'specificity loop' on the 'hammerhead' subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 A facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.

Scientific Publications

Heterosexual HIV 1 transmission after initiation of antiretroviral therapy a prospective cohort analysis

Donnell D, Baeten JM, Kiarie J, Thomas KK, Stevens W, Cohen CR, McIntyre J, Lingappa JR, Celum C

Heterosexual HIV-1 transmission after initiation of antiretroviral therapy: a prospective cohort analysis. Lancet 2010;375(9731):2092-8 doi: 10.1016/S0140-6736(10)60705-2

Abstract

High plasma HIV-1 RNA concentrations are associated with increased risk of HIV-1 transmission. Initiation of antiretroviral therapy (ART) reduces plasma HIV-1 concentrations. We aimed to assess the effect of ART use by patients infected with HIV-1 on risk of transmission to their uninfected partners.

Scientific Publications

Lack of complex N glycans on HIV 1 envelope glycoproteins preserves protein conformation and entry function

Eggink D, Melchers M, Wuhrer M, van Montfort T, Dey AK, Naaijkens BA, David KB, Le Douce V, Deelder AM, Kang K, Olson WC, Berkhout B, Hokke CH, Moore JP, Sanders RW

Lack of complex N-glycans on HIV-1 envelope glycoproteins preserves protein conformation and entry function. Virology 2010;401(2):236-47 doi: 10.1016/j.virol.2010.02.019

Abstract

The HIV-1 envelope glycoprotein complex (Env) is the focus of vaccine development aimed at eliciting humoral immunity. Env's extensive and heterogeneous N-linked glycosylation affects folding, binding to lectin receptors, antigenicity and immunogenicity. We characterized recombinant Env proteins and virus particles produced in mammalian cells that lack N-acetylglucosaminyltransferase I (GnTI), an enzyme necessary for the conversion of oligomannose N-glycans to complex N-glycans. Carbohydrate analyses revealed that trimeric Env produced in GnTI(-/-) cells contained exclusively oligomannose N-glycans, with incompletely trimmed oligomannose glycans predominating. The folding and conformation of Env proteins was little affected by the manipulation of the glycosylation. Viruses produced in GnTI(-/-) cells were infectious, indicating that the conversion to complex glycans is not necessary for Env entry function, although virus binding to the C-type lectin DC-SIGN was enhanced. Manipulating Env's N-glycosylation may be useful for structural and functional studies and for vaccine design.

Scientific Publications

Rational antibody based HIV 1 vaccine design current approaches and future directions

Walker LM, Burton DR

Rational antibody-based HIV-1 vaccine design: current approaches and future directions. Curr. Opin. Immunol. 2010;22(3):358-66 doi: 10.1016/j.coi.2010.02.012

Abstract

Many antiviral vaccines elicit neutralizing antibodies as a correlate of protection. For HIV, given the huge variability of the virus, it is widely believed that the induction of a broadly neutralizing antibody (bNAb) response will be crucial in a successful vaccine against the virus. Unfortunately, despite many efforts, the development of an immunogen that elicits bNAbs remains elusive. However, recent structural studies of HIV-1 Env proteins, generation of novel bNAbs, maturation of technologies for the isolation of further antibodies, insights into the requirements for antibody-mediated protection, and novel vaccination approaches are providing grounds for renewed optimism.

Scientific Publications

Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization

Binley JM, Ban YE, Crooks ET, Eggink D, Osawa K, Schief WR, Sanders RW

Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J. Virol. 2010;84(11):5637-55 doi: 10.1128/JVI.00105-10

Abstract

Complex N-glycans flank the receptor binding sites of the outer domain of HIV-1 gp120, ostensibly forming a protective 'fence' against antibodies. Here, we investigated the effects of rebuilding this fence with smaller glycoforms by expressing HIV-1 pseudovirions from a primary isolate in a human cell line lacking N-acetylglucosamine transferase I (GnTI), the enzyme that initiates the conversion of oligomannose N-glycans into complex N-glycans. Thus, complex glycans, including those that surround the receptor binding sites, are replaced by fully trimmed oligomannose stumps. Conversely, the untrimmed oligomannoses of the silent domain of gp120 are likely to remain unchanged. For comparison, we produced a mutant virus lacking a complex N-glycan of the V3 loop (N301Q). Both variants exhibited increased sensitivities to V3 loop-specific monoclonal antibodies (MAbs) and soluble CD4. The N301Q virus was also sensitive to 'nonneutralizing' MAbs targeting the primary and secondary receptor binding sites. Endoglycosidase H treatment resulted in the removal of outer domain glycans from the GnTI- but not the parent Env trimers, and this was associated with a rapid and complete loss in infectivity. Nevertheless, the glycan-depleted trimers could still bind to soluble receptor and coreceptor analogs, suggesting a block in post-receptor binding conformational changes necessary for fusion. Collectively, our data show that the antennae of complex N-glycans serve to protect the V3 loop and CD4 binding site, while N-glycan stems regulate native trimer conformation, such that their removal can lead to global changes in neutralization sensitivity and, in extreme cases, an inability to complete the conformational rearrangements necessary for infection.

Scientific Publications

Anti gp41 antibodies cloned from HIV infected patients with broadly neutralizing serologic activity

Pietzsch J, Scheid JF, Mouquet H, Seaman MS, Broder CC, Nussenzweig MC

Anti-gp41 antibodies cloned from HIV-infected patients with broadly neutralizing serologic activity. J. Virol. 2010;84(10):5032-42 doi: 10.1128/JVI.00154-10

Abstract

Most HIV-infected individuals develop antibodies to the gp120 and gp41 components of the viral spike; however, only a fraction of these individuals mount a broadly neutralizing serum response against HIV. We have cloned anti-HIV antibodies from the memory B-cell compartment of six individuals with variable viral loads and high titers of broadly neutralizing antibodies. Here, we report on the features of the anti-gp41 response in these patients. Competition experiments with previously characterized antibodies targeting defined epitopes on the gp41 ectodomain showed antibodies directed against the 'immunodominant region' (cluster I), the carboxy-terminal heptad repeat (cluster II), and the membrane-proximal external region (cluster IV). On the other hand, antibodies directed against the amino-terminal part of the molecule, including the fusion peptide, polar region, and the N-terminal heptad repeat, were not detected. When all patients' data were combined, unique B-cell clones targeting cluster I, II, and IV accounted for 32%, 49%, and 53% of all anti-gp41-reactive B cells, respectively; therefore, no single region was truly immunodominant. Finally, although we found no new neutralizing epitopes or HIV-1-neutralizing activity by any of the gp41 antibodies at concentrations of up to 50 microg/ml, high concentrations of 7 out of 15 anti-cluster I antibodies neutralized tier 2 viruses.

Scientific Publications

A V3 loop dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer

Xiang SH, Finzi A, Pacheco B, Alexander K, Yuan W, Rizzuto C, Huang CC, Kwong PD, Sodroski J

A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer. J. Virol. 2010;84(7):3147-61 doi: 10.1128/JVI.02587-09

Abstract

Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 beta2, beta19, beta20, and beta21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.

Scientific Publications

Donor and recipient envs from heterosexual human immunodeficiency virus subtype C transmission pairs require high receptor levels for entry

Alexander M, Lynch R, Mulenga J, Allen S, Derdeyn CA, Hunter E

Donor and recipient envs from heterosexual human immunodeficiency virus subtype C transmission pairs require high receptor levels for entry. J. Virol. 2010;84(8):4100-4 doi: 10.1128/JVI.02068-09

Abstract

Compact, glycan-restricted envelope (Env) glycoproteins are selected during heterosexual transmission of subtype C HIV-1. Donor and recipient glycoproteins (Envs) from six transmission pairs were evaluated for entry into HeLa cells expressing different levels of CD4 and CCR5. Donor and recipient Envs demonstrated efficient entry into cells expressing high levels of CD4 and CCR5, and entry declined as CCR5 levels decreased. Infectivity for all Envs was severely impaired in cells expressing low levels of CD4, even at the highest CCR5 levels. In 5/6 pairs, there was no significant difference in efficiency of receptor utilization between the donor and recipient Envs in these HeLa-derived cell lines. Thus, HIV-1 transmission does not appear to select for viruses that can preferentially utilize low levels of entry receptors.

Scientific Publications

Comparison of polyclonal expansion methods to improve the recovery of cervical cytobrush derived T cells from the female genital tract of HIV infected women

Bere A, Denny L, Hanekom W, Burgers WA, Passmore JA

Comparison of polyclonal expansion methods to improve the recovery of cervical cytobrush-derived T cells from the female genital tract of HIV-infected women. J. Immunol. Methods 2010;354(1-2):68-79 doi: 10.1016/j.jim.2010.02.002

Abstract

Cervical cytobrushing is a useful and non-invasive method for obtaining mucosal mononuclear cells from the female genital tract, but yields few cells. The aim of this study was to compare in vitro expansion protocols (anti-CD3, anti-CD3/CD28 or Dynal anti-CD3/CD28 beads) and cytokine combinations (IL-2, IL-7 and IL-15) to improve cervical T cell yields and viability. Eighteen HIV-infected women were included in this study to compare methods for polyclonal expansion of T cells from the female genital tract and blood. Comparison of T cell yields, viability and maturational status (by differential staining with CD45RO, CCR7 and CD27) was determined following 7 days of in vitro expansion. Anti-CD3 and IL-2 resulted in a 4.5-fold (range 3.7-5.3) expansion of cervical CD3+ T cells in 7 days compared to day 0. Inclusion of anti-CD28 or addition of IL-7 and IL-15 to this combination did not improve expansion. Culturing cells with Dynal beads (1:1) and IL-2, IL-7 and IL-15 gave rise to the highest yields after 7 days in both blood (7.1-fold) and cervix (5.6-fold). While expansion with anti-CD3 led to the accumulation of effector memory T cells (CD45RO+CCR7-CD27-), expansion with Dynabeads selected for accumulation of central memory T cells (CD45RO+CCR7+CD27+). We conclude that in vitro expansion with Dynabeads (1:1) in the presence of IL-2, IL-7 and IL-15 resulted in the greatest increase in viable T cells from both blood and cytobrush. Irrespective of the expansion method used, the T cell memory profile was altered following expansion.

Scientific Publications

Potent adaptive immune responses induced against HIV 1 gp140 and influenza virus HA by a polyanionic carbomer

Krashias G, Simon AK, Wegmann F, Kok WL, Ho LP, Stevens D, Skehel J, Heeney JL, Moghaddam AE, Sattentau QJ

Potent adaptive immune responses induced against HIV-1 gp140 and influenza virus HA by a polyanionic carbomer. Vaccine 2010;28(13):2482-9 doi: 10.1016/j.vaccine.2010.01.046

Abstract

Carbopol is a polyanionic carbomer gel used in man for a variety of topical applications and drug delivery purposes. Here we show that subcutaneous administration of carbopol with glycoprotein antigens elicits unusually strong specific adaptive immune responses in mice. Recombinant soluble HIV-1 envelope glycoprotein (Env)-based antigen formulated in carbopol was at least as potent at stimulating Env-specific B and T cell responses as Freund's Complete Adjuvant, and significantly more potent than aluminium salts. The antigen-specific T cell immune response elicited both Th1 and Th2 cytokines including high titers of IFN-gamma, IL-2 and IL-4, and drove a Th1 isotype-switched antibody response. Mice immunized with a low dose of purified influenza HA in carbopol generated high titers of anti-HA antibodies and were protected from lethal challenge and disease with live virus. Similarly, immunization of mice with the melanoma cell line B16F10 formulated in carbopol significantly delayed tumor growth. We propose that carbopol, or related cross-linked polyacrylic acid analogues, may have promise for use as systemic vaccine adjuvants in man.