Filter by
-
Type
Scientific Publications
A phase I double blind placebo controlled randomized study of a multigenic HIV 1 adenovirus subtype 35 vector vaccine in healthy uninfected adults
Keefer MC, Gilmour J, Hayes P, Gill D, Kopycinski J, Cheeseman H, Cashin-Cox M, Naarding M, Clark L, Fernandez N, Bunce CA, Hay CM, Welsh S, Komaroff W, Hachaambwa L, Tarragona-Fiol T, Sayeed E, Zachariah D, Ackland J, Loughran K, Barin B, Cormier E, Cox JH, Fast P, Excler JL
A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS ONE 2012;7(8):e41936 doi: 10.1371/journal.pone.0041936
Abstract
We conducted a phase I, randomized, double-blind, placebo-controlled trial to assess the safety and immunogenicity of escalating doses of two recombinant replication defective adenovirus serotype 35 (Ad35) vectors containing gag, reverse transcriptase, integrase and nef (Ad35-GRIN) and env (Ad35-ENV), both derived from HIV-1 subtype A isolates. The trial enrolled 56 healthy HIV-uninfected adults.
Scientific Publications
Structure guided alterations of the gp41 directed HIV 1 broadly neutralizing antibody 2F5 reveal new properties regarding its neutralizing function
Guenaga J, Wyatt RT
Structure-guided alterations of the gp41-directed HIV-1 broadly neutralizing antibody 2F5 reveal new properties regarding its neutralizing function. PLoS Pathog. 2012;8(7):e1002806 doi: 10.1371/journal.ppat.1002806
Abstract
The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation.
Scientific Publications
HIV 1 RNA may decline more slowly in semen than in blood following initiation of efavirenz based antiretroviral therapy
Graham SM, Holte SE, Dragavon JA, Ramko KM, Mandaliya KN, McClelland RS, Peshu NM, Sanders EJ, Krieger JN, Coombs RW
HIV-1 RNA may decline more slowly in semen than in blood following initiation of efavirenz-based antiretroviral therapy. PLoS ONE 2012;7(8):e43086 doi: 10.1371/journal.pone.0043086
Abstract
Antiretroviral therapy (ART) decreases HIV-1 RNA levels in semen and reduces sexual transmission from HIV-1-infected men. Our objective was to study the time course and magnitude of seminal HIV-1 RNA decay after initiation of efavirenz-based ART among 13 antiretroviral-naïve Kenyan men.
Scientific Publications
Failure of a novel rapid antigen and antibody combination test to detect antigen positive HIV infection in African adults with early HIV infection
Kilembe W, Keeling M, Karita E, Lakhi S, Chetty P, Price MA, Makkan H, Latka M, Likoti M, Ilukui K, Hurlston M, Allen S, Stevens G, Hunter E
Failure of a novel, rapid antigen and antibody combination test to detect antigen-positive HIV infection in African adults with early HIV infection. PLoS ONE 2012;7(6):e37154 doi: 10.1371/journal.pone.0037154
Abstract
Acute HIV infection (prior to antibody seroconversion) represents a high-risk window for HIV transmission. Development of a test to detect acute infection at the point-of-care is urgent.
Scientific Publications
Rapid development of glycan specific broad and potent anti HIV 1 gp120 neutralizing antibodies in an R5 SIV HIV chimeric virus infected macaque
Walker LM, Sok D, Nishimura Y, Donau O, Sadjadpour R, Gautam R, Shingai M, Pejchal R, Ramos A, Simek MD, Geng Y, Wilson IA, Poignard P, Martin MA, Burton DR
Rapid development of glycan-specific, broad, and potent anti-HIV-1 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque. Proc. Natl. Acad. Sci. U.S.A. 2011;108(50):20125-9 doi: 10.1073/pnas.1117531108
Abstract
It is widely believed that the induction of a broadly neutralizing antibody (bNAb) response will be a critical component of a successful vaccine against HIV. A significant fraction of HIV-infected individuals mount bNAb responses, providing support for the notion that such responses could be elicited through vaccination. Infection of macaques with simian immunodeficiency virus (SIV) or SIV/HIV chimeric virus (SHIV) has been widely used to model aspects of HIV infection, but to date, only limited bNAb responses have been described. Here, we screened plasma from 14 R5-tropic SHIV-infected macaques for broadly neutralizing activity and identified a macaque with highly potent cross-clade plasma NAb response. Longitudinal studies showed that the development of broad and autologous NAb responses occurred coincidentally in this animal. Serum-mapping studies, using pseudovirus point mutants and antigen adsorption assays, indicated that the plasma bNAbs are specific for epitopes that include carbohydrates and are critically dependent on the glycan at position 332 of Env gp120. The results described herein provide insight into the development and evolution of a broad response, suggest that certain bNAb specificities may be more rapidly induced by immunization than others, and provide a potential model for the facile study of the development of bNAb responses.
Scientific Publications
Structure based design of a protein immunogen that displays an HIV 1 gp41 neutralizing epitope
Stanfield RL, Julien JP, Pejchal R, Gach JS, Zwick MB, Wilson IA
Structure-based design of a protein immunogen that displays an HIV-1 gp41 neutralizing epitope. J. Mol. Biol. 2011;414(3):460-76 doi: 10.1016/j.jmb.2011.10.014
Abstract
Antibody Z13e1 is a relatively broadly neutralizing anti-human immunodeficiency virus type 1 antibody that recognizes the membrane-proximal external region (MPER) of the human immunodeficiency virus type 1 envelope glycoprotein gp41. Based on the crystal structure of an MPER epitope peptide in complex with Z13e1 Fab, we identified an unrelated protein, interleukin (IL)-22, with a surface-exposed region that is structurally homologous in its backbone to the gp41 Z13e1 epitope. By grafting the gp41 Z13e1 epitope sequence onto the structurally homologous region in IL-22, we engineered a novel protein (Z13-IL22-2) that contains the MPER epitope sequence for use as a potential immunogen and as a reagent for the detection of Z13e1-like antibodies. The Z13-IL22-2 protein binds Fab Z13e1 with a K(d) of 73 nM. The crystal structure of Z13-IL22-2 in complex with Fab Z13e1 shows that the epitope region is faithfully replicated in the Fab-bound scaffold protein; however, isothermal calorimetry studies indicate that Fab binding to Z13-IL22-2 is not a lock-and-key event, leaving open the question of whether conformational changes upon binding occur in the Fab, in Z13-IL-22, or in both.
Scientific Publications
Modeling the impact on the HIV epidemic of treating discordant couples with antiretrovirals to prevent transmission
El-Sadr WM, Coburn BJ, Blower S
Modeling the impact on the HIV epidemic of treating discordant couples with antiretrovirals to prevent transmission. AIDS 2011;25(18):2295-9 doi: 10.1097/QAD.0b013e32834c4c22
Abstract
The HPTN 052 study demonstrated a 96% reduction in HIV transmission in discordant couples using antiretroviral therapy (ART).
Scientific Publications
A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield
Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA
A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 2011;334(6059):1097-103 doi: 10.1126/science.1213256
Abstract
The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man(9) at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificity. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.
Scientific Publications
Structure of HIV 1 gp120 V1 V2 domain with broadly neutralizing antibody PG9
McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, O'Dell S, Patel N, Shahzad-ul-Hussan S, Yang Y, Zhang B, Zhou T, Zhu J, Boyington JC, Chuang GY, Diwanji D, Georgiev I, Kwon YD, Lee D, Louder MK, Moquin S, Schmidt SD, Yang ZY, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Burton DR, Koff WC, Walker LM, Phogat S, Wyatt R, Orwenyo J, Wang LX, Arthos J, Bewley CA, Mascola JR, Nabel GJ, Schief WR, Ward AB, Wilson IA, Kwong PD
Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 2011;480(7377):336-43 doi: 10.1038/nature10696
doi: 10.1038/nature10696
Abstract
Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which-with PG9-involves a site of vulnerability comprising just two glycans and a strand.
Scientific Publications
Role of donor genital tract HIV 1 diversity in the transmission bottleneck
Boeras DI, Hraber PT, Hurlston M, Evans-Strickfaden T, Bhattacharya T, Giorgi EE, Mulenga J, Karita E, Korber BT, Allen S, Hart CE, Derdeyn CA, Hunter E
Role of donor genital tract HIV-1 diversity in the transmission bottleneck. Proc. Natl. Acad. Sci. U.S.A. 2011;108(46):E1156-63 doi: 10.1073/pnas.1103764108
Abstract
The predominant mode of HIV-1 infection is heterosexual transmission, where a genetic bottleneck is imposed on the virus quasispecies. To probe whether limited genetic diversity in the genital tract (GT) of the transmitting partner drives this bottleneck, viral envelope sequences from the blood and genital fluids of eight transmission pairs from Rwanda and Zambia were analyzed. The chronically infected transmitting partner's virus population was heterogeneous with distinct genital subpopulations, and the virus populations within the GT of two of four women sampled longitudinally exhibited evidence of stability over time intervals on the order of weeks to months. Surprisingly, the transmitted founder variant was not derived from the predominant GT subpopulations. Rather, in each case, the transmitting variant was phylogenetically distinct from the sampled locally replicating population. Although the exact distribution of the virus population present in the GT at the time of transmission cannot be unambiguously defined in these human studies, it is unlikely, based on these data, that the transmission bottleneck is driven in every case by limited viral diversity in the donor GT or that HIV transmission is solely a stochastic event.
Scientific Publications
A prospective study of frequency and correlates of intimate partner violence among African heterosexual HIV serodiscordant couples
Were E, Curran K, Delany-Moretlwe S, Nakku-Joloba E, Mugo NR, Kiarie J, Bukusi EA, Celum C, Baeten JM
A prospective study of frequency and correlates of intimate partner violence among African heterosexual HIV serodiscordant couples. AIDS 2011;25(16):2009-18 doi: 10.1097/QAD.0b013e32834b005d
Abstract
Intimate partner violence (IPV) is common worldwide and is an important consideration in couples HIV voluntary counseling and testing (CVCT), especially for HIV-serodiscordant couples (i.e. in which only one member is HIV-infected).
Scientific Publications
Computation guided backbone grafting of a discontinuous motif onto a protein scaffold
Azoitei ML, Correia BE, Ban YE, Carrico C, Kalyuzhniy O, Chen L, Schroeter A, Huang PS, McLellan JS, Kwong PD, Baker D, Strong RK, Schief WR
Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 2011;334(6054):373-6 doi: 10.1126/science.1209368
Abstract
The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.
Scientific Publications
DNA Ad5 vaccination with SIV epitopes induced epitope specific CD4 T cells but few subdominant epitope specific CD8 T cells
Vojnov L, Bean AT, Peterson EJ, Chiuchiolo MJ, Sacha JB, Denes FS, Sandor M, Fuller DH, Fuller JT, Parks CL, McDermott AB, Wilson NA, Watkins DI
DNA/Ad5 vaccination with SIV epitopes induced epitope-specific CD4⁺ T cells, but few subdominant epitope-specific CD8⁺ T cells. Vaccine 2011;29(43):7483-90 doi: 10.1016/j.vaccine.2011.07.048
Abstract
The goals of a T cell-based vaccine for HIV are to reduce viral peak and setpoint and prevent transmission. While it has been relatively straightforward to induce CD8(+) T cell responses against immunodominant T cell epitopes, it has been more difficult to broaden the vaccine-induced CD8(+) T cell response against subdominant T cell epitopes. Additionally, vaccine regimens to induce CD4(+) T cell responses have been studied only in limited settings. In this study, we sought to elicit CD8(+) T cells against subdominant epitopes and CD4(+) T cells using various novel and well-established vaccine strategies. We vaccinated three Mamu-A*01(+) animals with five Mamu-A*01-restricted subdominant SIV-specific CD8(+) T cell epitopes. All three vaccinated animals made high frequency responses against the Mamu-A*01-restricted Env TL9 epitope with one animal making a low frequency CD8(+) T cell response against the Pol LV10 epitope. We also induced SIV-specific CD4(+) T cells against several MHC class II DRBw*606-restricted epitopes. Electroporated DNA with pIL-12 followed by a rAd5 boost was the most immunogenic vaccine strategy. We induced responses against all three Mamu-DRB*w606-restricted CD4 epitopes in the vaccine after the DNA prime. Ad5 vaccination further boosted these responses. Although we successfully elicited several robust epitope-specific CD4(+) T cell responses, vaccination with subdominant MHC class I epitopes elicited few detectable CD8(+) T cell responses. Broadening the CD8(+) T cell response against subdominant MHC class I epitopes was, therefore, more difficult than we initially anticipated.